Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Farmakologi"

Sort by: Order: Results:

  • Niittymäki, Erika (2021)
    Since the discovery of ketamine’s antidepressant response, numerous of studies have been observed it to alleviate depressive symptoms rapidly and effectively within hours. This is a significant advantage compared to traditional antidepressants, which take weeks to show treatment efficacy. Ketamine is a N- methyl-D-aspartate receptor (NMDA) antagonist and its underlying mechanism of is proposed to be in its ability to increase synaptic plasticity and this is ultimately believed to improve mood. On a molecular level, the antidepressant effects have been observed to be dependent on the activation of tropomyosin receptor kinase B (TrkB) signalling pathway. However, the antidepressant mechanism of ketamine remains still poorly understood as no new NMDA-antagonist or other rapid-acting antidepressants have been successfully developed for clinical use despite many years of effort. Therefore, some have proposed that the missing pieces of understanding its antidepressant effects might be linked to ketamine’s ability to modify sleep patterns and circadian-related molecules. Ketamine has especially been demonstrated to increase slow-wave activity during the following night of treatment and these changes have been shown to predict the clinical outcome in patients with major depressive disorder (MDD). Slow-wave activity is a low-frequency and high-amplitude wave seen in electroencephalography, which is highly expressed during the deepest stage of sleep, and this has been prominently found to be reduced in MDD patients. Even more intriguing, there are indications that ketamine might increase slow-wave activity also immediately after its administration. During this time, TrkB signalling is observed to became active. Following these molecular findings, we sought to investigate the link between the TrkB signalling pathway and two prominent processes occurring during slow-wave sleep. During slow-wave sleep processes such as (1) reduction of brain’s energy expenditure and (2) the activation of glymphatic system is known to occur. The glymphatic system is as lymphatic-perivascular network, which is responsible for clearing the brain from the metabolic waste. Thus, in this study, our objective was to investigate whether by causing an acute decline in adenosine-triphosphate (ATP) production or by stimulating the glymphatic network, we could activate the same plasticity-related pathways as ketamine is capable of activating in mice prefrontal cortex. The results of this study suggest that acute metabolic reduction can trigger pathways regarding synaptic plasticity. The metabolic inhibitor, 2-deoxy-D-glucose and mercaptoacetate (2DG+MA), was found to phosphorylate the TrkB receptor and its downstream signalling molecules GSK3β and p70S6K, while MAPK was dephosphorylated. These results correlate with the previous findings of ketamine’s effect after its administration. We also found a plasticity-related marker, MAP2, to be heavily phosphorylated by 2DG+MA, indicating 2DG+MA having a surprising role on neuroplasticity. These results are promising indication of understanding the rapid effects of ketamine and might even give important insight to developing novel antidepressants. However, these findings are only preliminary, and more research is needed to directly link antidepressant effects and energy metabolic inhibition together, as our study did not directly investigate antidepressants and depression-like behaviour in mice.
  • Annala, Iina (2021)
    Subanesthetic-dose ketamine, an N-methyl-D-aspartate receptor (NMDAR) blocker, exerts rapid antidepressant effects that sustain long after its elimination from the body. The precise mechanism remains unknown, but regulation of TrkB (tropomyosin receptor kinase B), ERK (extracellular-regulated kinase 1 and 2), GSK3β (glycogen synthase kinase 3β) and mTOR (mammalian target of rapamycin) signaling within the prefrontal cortex (PFC) have been deemed important for its antidepressant-like effects in rodents. In addition, activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is thought to be an important step in its mechanism. Nitrous oxide (N2O), another NMDAR antagonist and a putative rapid-acting antidepressant, regulates the same molecular pathways as ketamine in the rodent PFC. The fast pharmacokinetics of N2O have been exploited to show that markers of neuronal excitation, including phosphorylation of ERK, are upregulated in the PFC during its acute pharmacological effects (NMDAR blockade), while regulation of TrkB, GSK3β and P70S6K emerges only upon N2O withdrawal. In the first part of this study, we investigated the N2O-induced biochemical changes associated with neuronal excitation and BDNF-TrkB signaling in the PFC and further, the requirement for AMPAR activation in inducing them. We focused on the effects seen after the acute pharmacological effects of N2O. N2O (65% for 20 min) was administered to adult male C57BL/6 mice with or without pretreatment with AMPAR antagonist (NBQX, 10 mg/kg) and PFC samples were collected 15 minutes after stopping N2O delivery. Within this time N2O is expected to be completely eliminated. The brain samples were analyzed using western blot, enzyme-linked immunosorbent assay and quantitative reverse transcription PCR. We observed that N2O increased levels of phosphorylated TrkB, GSK3β and P70S6K, and these effects were not attenuated by NBQX pretreatment. At the same time, we observed a decrease in the levels of phosphorylated ERK, which was attenuated in mice that received NBQX prior to N2O. Tissue levels of BDNF protein or messenger RNA (exon IV) were not different between control and experimental groups. These results indicate that the mechanism of N2O is associated with TrkB and ERK signaling that are regulated independently of each other. It appears that AMPAR activation is not required for TrkB signaling, although it might play a role in ERK signaling. Further, N2O-induced TrkB phosphorylation in the PFC is not associated with changes in total levels of BDNF. In the second part of the study, we aimed to search for new ketamine-like NMDAR blockers with antidepressant potential. Ketamine was used as a query compound for in silico substructure search to find commercial ketamine analogs. The retrieved ketamine analogs were filtered by their computed ADMET properties and then further screened virtually by docking them to the pore region of NMDAR complex (protein data bank code: 4TLM), around the predicted binding site of ketamine. Finally, we sought to study if selected ketamine analogs could elicit ketamine-like effects on TrkB and ERK signaling in mouse primary cortical neurons. However, we did not proceed to test the analogs since ketamine (positive control) did not show any effects on TrkB or ERK phosphorylation in our culture. Overall, this study advances the understanding of the mechanism of N2O, possibly giving new insight of the antidepressant mechanisms of NMDAR-blocking agents more generally. Additionally, we found promising ketamine analogs that await experimental testing.
  • Halinen, Sara (2023)
    Current pharmacological treatments for major depressive disorder leave many patients unresponsive to treatment or treatment response is delayed by weeks. More effective treatments with quicker effect onset are therefore needed. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonists has demonstrated sustained rapid antidepressant activity after single dose. Precise mechanisms behind this effect are unknown, however some crucial contributors to ketamine-induced behavioural effects in rodents include phosphorylation of Tropomyosin receptor kinase B (TrkB), ribosomal protein s6 kinase (p70s6k), glycogen synthase kinase 3 (GSK3), mitogen activated protein kinases (MAPKs), and activation of α-amino-3-hydroxy-5- methyl-4- isoxazolepropionic acid receptors (AMPAR). Similar TrkB related signaling cascades are also activated with another NMDA receptor antagonist and a putative rapid-acting antidepressant, nitrous oxide (N2O). During acute effects of N2O, cortical excitation increases MAPK phosphorylation and upregulates expression of activity dependent immediate early genes (IEG; c-Fos and Bdnf IV). Phosphorylation of TrkB, GSK3 and p70s6k appearing only after N2O has been eliminated suggest that TrkB signaling is induced as an adaptive response to treatment. The first objective of this study was to corroborate previous results from our group to validate our gas administration set up and protein analysis protocol. To analyze N2O-induced phosphorylation of proteins implicated in ketamine’s behavioral effects in mice, we treated C57BL/6J male mice with either room air (control) or 65% nitrous oxide for 20 minutes. After gas exposure and 15-minute washout period, medial prefrontal cortex samples were dissected to be analyzed with western blotting. In this study nitrous oxide exposure did not induce increased TrkB signaling in nitrous oxide withdrawal. Another aim of this study was to investigate the involvement of AMPARs in inducing cortical excitation with N2O. Pretreatment of AMPAR antagonist (10 mg/kg, NBQX) or saline was given to C57BL/6J male mice 10 minutes prior to 1 hour exposure to 50 % O2 or 50 % N2O, a N2O dose previously shown to induce IEG expression. One hour after gas exposure mice were euthanized and mPFCs were dissected and analyzed with reverse transcriptase quantitative PCR (RT-qPCR). No regulation in IEG expression was induced with nitrous oxide, NBQX pretreatment or combination compared to control. Additional studies factoring in limitations of this study are needed to uncover the involvement of AMPAR in inducing cortical excitation and antidepressant-like behavioral effects of N2O in preclinical models of depression.
  • Rauvala, Oskari (2023)
    Rodent studies indicate that the effects of pharmacological antidepressant treatments depend on the TrkB (tropomyosin-related kinase B) receptor of the neurotrophic factor BDNF (brain-derived neurotrophic factor). However, the mechanism by which TrkB signaling becomes active remains disputed. Our group proposes that the activation of TrkB signaling is a result of an indirect physiological adaptation to the drug treatment, which is supported by observations made with rapid-acting antidepressants ketamine and nitrous oxide. Previous studies indicate that the immediate effects of the drugs are followed by a sedative state resembling deep sleep, during which TrkB signaling becomes active. The sedative state is accompanied with a drop in core body temperature, and preliminary findings indicate that preventing the drug-induced hypothermia blocks TrkB signaling in the cortex.    The purpose of this study was to investigate the effect of ambient temperature on TrkB signaling in the hippocampus following nitrous oxide administration. Nitrous oxide (65 % ad 100 % O2) was administered to adult male mice for 20 minutes. After the drug treatment the animals were kept in different recovery conditions: room temperature or a heightened ambient temperature of approximately 36 °C for 15 minutes. Following the recovery, the animals were euthanised, and hippocampus samples were collected from the animals. Levels of BDNF and TrkB signaling were analysed with ELISA and western blot, respectively.    Nitrous oxide caused a significant drop in core body temperature, but this was not accompanied with increased BDNF levels or TrkB signaling. Evidence suggests that hippocampal atrophy contributes to depression, but the acute effects of antidepressant treatments on TrkB signaling in this brain area appear to be less pronounced than those seen in the prefrontal cortex. The findings indicate that nitrous oxide has a replicable hypothermic effect, but this is not associated with increased TrkB signaling in the hippocampus.