Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Neurotiede"

Sort by: Order: Results:

  • Boiko, Elizaveta (2023)
    In this master’s thesis project, I studied the association of lipid molecules phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 3-phosphate (PI3P) with autophagy in neurons. One of the aims of the study is to determine the level of basal autophagy in primary hippocampal neurons and to come up with a protocol for autophagosome observation without forcing radical changes in cell culture conditions. Other mammalian cells have extremely weak basal autophagy, but they increase it significantly in response to starvation, for example. However, neurons are extremely sensitive to any changes in their surroundings. They change their morphology, behaviour and biochemical properties, and often they simply do not survive. Therefore, the goal is a protocol for successful autophagy observation with minimal external influence. Despite the debate around basal autophagy in neurons, I observed high levels of basal autophagy in neuronal cells incubated in media without supplements. Also, my observations revealed that the inhibition of the last step of autophagosome processing with Bafilomycin A1, was enough to cause the massive accumulation of large autophagosomes. Results demonstrated that primary hippocampal neurons exhibit high levels of basal autophagy, suggesting that on the contrary to other mammalian cells neurons might not have enough potential to increase autophagy when it is induced pharmacologically or by stressful conditions. This would explain why autophagy induction is often claimed to be ineffective for neuronal cultures. The main goal is to observe and compare PI4P presence on autophagosomes in normal conditions and when autophagosome:lysosome fusion is inhibited with Bafilomycin A1. The side goal is to observe PI3P presence on autophagosomes as well. I transfected primary hippocampal neurons with fluorescent probes for PI4P or PI3P as well as for autophagosome-related protein LC3. Localization data was collected with live-cell imaging on a confocal microscope. As expected, PI3P was not detected on autophagosomes located in soma. It is involved in the initial vesicle biogenesis in distal axons but not in later events taking place closer to the cell body. PI4P showed high degree of colocalization with LC3, indicating PI4P presence on autophagosomes, but only when the fusion was presumably inhibited by Bafilomycin A1. These results suggest that PI4P appears on autophagosomes either as a result of compensatory pathway, where autophagosomes fuse with late endosomes instead of lysosomes; or as a molecule normally involved in autophagosome:lysosome fusion. Literature supports the latter explanation, but it cannot be confirmed without further research. These results give an insight into PI4P role in neuronal autophagy and might be relevant for the future research of autophagy disruption and aggregate accumulation in neuronal diseases as a consequence of abnormal lipid signalling, lipid metabolism and transport.
  • Saarreharju, Roosa (2020)
    While weeks of continuous treatment is required for conventional antidepressant drugs (e.g. fluoxetine) to bring their full therapeutic effects, a subanesthetic dose of ketamine alleviates the core symptoms of depression (anhedonia, depressed mood) and suicidal thinking within just few hours and the effects may last for days. Nitrous oxide (N2O, “laughing gas”), another NMDAR antagonist, has recently been shown to have similar rapid antidepressant effects in treatment-resistant depressed patients (Nagele et al. 2015). We previously found using naïve mice ketamine and N2O treatment to upregulate five mRNAs related to the MAPK pathway and synaptic plasticity, both implicated as being important in the action of rapid-acting antidepressants. In the current study, these shared mechanisms were further investigated in C57BL/6JHsd mice, using behavioral test batteries to study depressive-like behaviour and RT-qPCR for biochemical analyses. We first aimed to demonstrate behavioral differences between naïve mice and a chronic corticosterone-induced animal model of depression, and to use this model to investigate antidepressant-like effects of ketamine and N2O. According to the results, chronic corticosterone produced some behaviors typical of a depressive-like phenotype, namely significant worsening of coat state and decreased saccharin consumption in the saccharin preference test. Both ketamine and N2O exhibited antidepressant-like effects by reverting decreased saccharin preference. We then aimed to elucidate the effects of ketamine and N2O on five previously found shared mRNAs: Arc, Dusp1, Dusp5, Dusp6 and Nr4a1. N2O significantly upregulated all targets in the vmPFC, except Dusp5, two hours after beginning of N2O treatment. Neither ketamine nor sole chronic corticosterone produced any significant changes. The results of this study suggest that N2O is a potential candidate for rapid alleviation of depressive symptoms. We suggest that the action of rapid-acting antidepressants, more specifically N2O, is based on a homeostatic response of the brain to a presented challenge. Here this challenge would be cortical excitation previously been shown to be caused by N2O, which leads to activation of pathways such as MAPK and subsequent Arc, Dusp and Nr4a1 signaling. The level of expression of these markers would then depend on which phase this response is in and hence, the differences in time between treatment and brain sample dissection could be a reason for conflicting results to previous research. Future studies would benefit from detailed investigation of the chronic corticosterone-induced model due to its potential in controlling for behavioral variability, thus reducing the number of animals needed for preclinical research. Overall the preliminary findings of this study could be one of the first steps in the search for the mechanisms underlying the potential antidepressant effect of N2O, how these molecular markers are related to its action and how it differs from the action of ketamine.
  • Jasikova, Sara (2024)
    Schizophrenia (SCZ) is a chronic neuropsychiatric disorder believed to arise from the intricate interplay between genetic predisposition and environmental factors. Though the aetiology of SCZ is unknown many findings support an excessive synaptic pruning hypothesis. Maternal immune activation (MIA), encompassing prenatal infection and systemic inflammation, constitutes a significant environmental risk factor implicated in SCZ onset (Patterson, 2009; Brown, 2012). MIA induces persistent alterations in the microglia of offspring termed microglial priming, characterized by heightened reactivity to inflammatory stimuli (Choudhury and Lennox, 2021). Notably, studies have reported increased sensitivity to activation, elevated expression of inflammatory markers, and an increase in the total number of microglia (Perry and Holmes, 2014; Choudhury and Lennox, 2021). Primed microglia may contribute to excessive synaptic pruning, thereby compromising neuronal connectivity and potentially leading to the onset of SCZ. This thesis investigated the impact of microglia on neurons and explored the microglial tendency for hyperactivation in the context of SCZ predisposition. It utilized induced pluripotent stem cell (iPSC) technology to create a rat astrocyte/unaffected control human iPSC-derived neuron/induced microglia-like cell (iMGL) tri-culture model. Uniquely, iMGLs were differentiated from a library of monozygotic twin lines discordant for SCZ, and unaffected controls. This allows for exploration of the differences between iMGLs from unaffected twins with a genetic predisposition for SCZ, affected twins with clinical manifestation of SCZ, and unaffected controls without a known genetic predisposition for SCZ. The tri-culture system was subjected to lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly(I:C)) treatments to activate iMGLs, and differences in cytokine release, synapse pruning, and neuronal activity were assessed. The principal outcomes of our investigation revealed enhanced cytokine release from SCZ-derived iMGLs when exposed to inflammatory stimuli, alongside increased network connectivity among samples containing genetically predisposed iMGLs. While most of the results did not reach significance, they suggest a potential link between SCZ pathophysiology and hyperactive microglia. Future research will focus on enlarging the study cohort, establishing tri-culture models featuring neurons and iMGLs derived from the iPSCs of the same patient, conducting CBA analysis to confirm the elevated cytokines finding, and scrutinizing iMGL morphology.
  • Holopainen, Katariina (2023)
    At visual threshold, the vision relies on catching incident photons. The ultimate limitation of visual sensitivity arises from the quantal nature of light. At night, the uncertainty of photon arrivals differs fundamentally from daylight conditions, where photon flow can be considered continuous, and sets an absolute physical limitation to visual sensitivity. Visual sensitivity has been postulated to be affected by circadian physiological changes. Here, we have shown, that absolute visual sensitivity is under circadian control in light decrement, or quantal shadow, detection in mice. A behavioural visual task of finding a dark stimulus spot was conducted in a white water maze across several background light intensities leading gradually from clearly visible light to darkness. The percentage of correct choices in the task as a function of light intensity was used to measure visual sensitivity, which was remarkably higher nocturnally. Another parameter affecting visual sensitivity was shown to be the decrement size. Mice were more successful in finding the bigger decrements of the three spatial scales used, as well as succeeding in the task better at night. This finding suggests that visual sensitivity is affected by the absolute number of photons, or more precisely, the absolute number of missing photons in contrast to photons of the background illumination.