Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Backlund, Sofia Maria"

Sort by: Order: Results:

  • Backlund, Sofia Maria (2022)
    Coral reefs form important marine ecosystems and simultaneously are at risk of deterioration due to rapidly changing environments as a consequence of human actions. Understanding their dynamics is thus important in order to be able to protect them from being destroyed. In this thesis we construct a lattice model for two life-history strategies of corals, brooders and spawners. These two strategies differ mainly in their modes of sexual reproduction, but also differences in growth and death rates as well as competitive ability are considered. We use pair approximation to help analyse the model while keeping its spatial structure. Numerical analysis is used to find the equilibria of the system as well as their stabilities, first for a single strategy and then for the two-strategy system. We find that the two strategies are able to coexist if the spawners have a higher growth rate and higher death rate and are competitively superior to brooders. This requires some reproduction over distance and a trade-off between growth and death rates. Thus we find that brooders are focusing a bigger part of their energy on long-distance reproduction, while spawners are dominating over short distances and having a higher turnover. We also find that both mutual invasibility and coexistence in the broader sense are only possible for low rates of sexual reproduction for both strategies. For higher rates of sexual reproduction we find that whichever strategy invades the lattice first will stay and the other cannot invade. Lastly we look at the effect of a change in environmental conditions, namely the acidification and temperature increase of oceans, on the two strategies and find that it affects the two strategies differently. The spawners are quickly driven to extinction by the change in environmental conditions, while brooders initially benefit from the changing conditions and only start to suffer themselves after the spawners have gone extinct.