Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Cavonius, Karin"

Sort by: Order: Results:

  • Cavonius, Karin (2021)
    Huntington’s disease (HD) is a rare but devastating neurodegenerative disease, progressively culminating in severe brain atrophy and death. The disease is caused by an inherited mutation resulting in a CAG trinucleotide repeat expansion in the huntingtin gene, leading to the production of a neurotoxic protein, known as mutant huntingtin, with an abnormally long polyglutamine stretch. Even though the genetic background of HD is known, the cellular pathways affected in the disease are complex and not completely understood. Increasing evidence indicates that endoplasmic reticulum (ER) stress – a condition of disturbances in normal ER activity, leading to accumulation and aggregation of misfolded proteins in the ER lumen – is a central factor in the pathogenesis of HD and other neurodegenerative diseases. In the literature review of this thesis, known pathogenic cellular mechanisms of HD and how these cellular mechanisms are connected to ER stress, are discussed. Unpublished data from previous studies in our laboratory have indicated that the ER luminal protein canopy homolog 2 (CNPY2) could play a role in the regulation of neuronal survival, including the viability of mutant huntingtin expressing neurons. The aim of the experimental part of this study was to gain insight into a possible function of CNPY2 in HD, by examining the levels of the protein in neuronal models of HD under various conditions, such as ER stress, and by searching for potential interacting partners of CNPY2 amongst known ER stress regulators. The obtained results show that the levels of CNPY2 are increased in striatal neurons expressing mutant huntingtin, and that the secretion of CNPY2 is increased by these neurons, compared to control neurons expressing normal huntingtin. Further, we show that CNPY2 interacts with the major ER stress regulator binding immunoglobulin protein (BiP) in human neuroblastoma cells treated with the ER stress inducer tunicamycin, and that the intracellular levels of CNPY2 are altered by tunicamycin treatment. Together, these findings indicate that CNPY2 could be involved in the pathogenesis of HD. However, further research on the functions of CNPY2 and its role in ER stress regulation is required to understand the nature of this involvement.