Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Gabbouj, Selma"

Sort by: Order: Results:

  • Gabbouj, Selma (2022)
    Chemical attribution encompasses the detection and characterization of compounds of interest to find signature impurity, isotopic, and elemental profiles, which can be used to link illegal material to specific manufacturers, stocks, precursors, synthetic routes, or geographical locations. Explosives have been increasingly used for criminal purposes world-wide due to the availability of explosive material, precursors, and synthesis instructions. Nitrate ester, nitramine, and nitroaromatic military explosives as well as homemade organic peroxides are examples from over 250 explosive materials listed in the 2020 Federal Register of the US Bureau of Alcohol, Tobacco, Firearms, and Explosives. The first part of the thesis is a literature review, which aims to 1) present published mass spectrometric (MS) and liquid chromatographic (LC) detection methods for explosives and 2) explore chemical attribution studies of explosives and related compounds, such as illicit drugs and chemical warfare agents. The second part presents the experimental research carried out at the Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), which aims to 3) develop an analysis method for multiclass explosives using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and 4) perform chemical attribution of the nitrate ester explosive pentaerythritol tetranitrate (PETN) from different sources by isotopic and impurity profiling. Multiclass explosives detection required optimization of MS parameters, such as lower ion transfer tube and vaporizer temperatures and negative ion detection mode, as well as introduction of additives into LC eluents to promote adduct formation. PETN, 1,3,5-trinitro-1,3,5-triazinane (RDX), 1,3,5,7-tetranitro- 1,3,5,7-tetrazocane (HMX), 2,4,6-trinitrophenyl-methylnitramine (tetryl), 2-amino-4,6-dinitrotoluene (2- ADNT), and 4-amino-2,6-dinitrotoluene (4-ADNT) were detected from a mixture as nitrate adducts. Optimal parameters for the isotopic profiling of PETN were found to be 500 000 resolution, 2E4 (5 %) automatic gain control (AGC) target, and 50 ms injection time. Student’s t-tests revealed statistically significant differences between oxygen isotope ratio (18O/16O) values of PETN from two different sources. However, lack of repeatability of the isotope ratio results was an issue. 7 different methods were tested for the impurity profiling of PETN. Samples were rather pure but clear differences in the high mass range (m/z 600–900) impurity profiles of the two types of PETN were discovered, leading to the conclusion that they are indeed from different sources. Tentative structures of PETN homologue derivatives were assigned to the impurities using MS2 fragmentation and literature. Based on the results of this work, LC-HRMS is suitable for impurity analysis even for pure samples, but not very efficient or practical for analyzing isotope ratios.