Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Koskinen, Kalle Matias"

Sort by: Order: Results:

  • Koskinen, Kalle Matias (2018)
    This thesis can be regarded as a light, but thorough, introduction to the algebraic approach to quantum statistical mechanics and a subsequent test of this framework in the form of an application to Bose-Einstein condensates. The success of the algebraic approach to quantum statistical mechanics hinges upon the remarkable properties of special operator algebras known as C^*-algebras. These algebras have unique characterization properties which allows one to readily identify the mathematical counterparts of concepts in physics while at the same time maintaining mathematical rigour and clarity. In the first half of this thesis, we focus on abstract C^*-algebras known as the canonical commutation relation algebras (CCR algebras) which are generated by elements satisfying specific commutation relations. The main result in this section is the proof of a certain kind of algebraic uniqueness of these algebras. The main idea of the proof is to utilise the underlying common structure of any of the CCR algebras and explicitly construct an isomorphism between the generators of these algebras. The construction of this isomorphism involves the use of abstract Fourier analysis on groups and various arguments concerning bounded operators. The second half of the thesis concerns the rigorous set-up of the formation of Bose-Einstein condensation. First, one defines the Gibbs grand canonical equilibrium states, and then we specialize to studying the taking of the thermodynamic limit of these systems in various contexts. The main result of this section involves two main elements. The first is that by fixing the temperature and density of the system while varying its activity and volume, there exists a limiting state corresponding to the taking of the thermodynamic limit. The second element concerns the existence of a critical density after which the limiting state begins to show the physical characteristics of Bose-Einstein condensation. The mathematical issues one faces with Bose-Einstein condensation are mainly related to the unboundedness of the creation and annihilation operators and the definition of the algebra that we are working on. The first issue is relevant to all areas of mathematical physics, and one deals with it in the standard ways. The second issue is more nuanced and is a direct result of the first issue we mentioned. In particular, we would like to define the states on an algebra which contains the operators that we are interested in. The problem is that these operators are unbounded, and, as a result, one must instead use the CCR algebra and show by extension that we can, in fact, also use the unbounded operators in this state.