Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Maalampi, Panu"

Sort by: Order: Results:

  • Maalampi, Panu (2024)
    Fog has a significant impact on society, by making transportation and aviation industries difficult to operate as planned due to reduced visibility. Studies have estimated that 32 % of marine accidents, worldwide, and 40 %, in the Atlantic Ocean, took place during dense sea fog. Therefore forecasting fog accurately, and allowing society to function, would help mitigate financial losses associated with possible accidents and delays. However, forecasting the complex fog with numerical weather prediction (NWP) models remains difficult for the modelling community. A NWP model typically operates in the resolution of kilometres, when the multiple processes associated with fog (turbulence, cloud droplet microphysics, thermal inversion) have a smaller spatial scale than that. Consequently, some processes need to be simplified and parametrised, increasing the uncertainty, or more computational power is needed to be allocated for them. One of these NWP models is HARMONIE-AROME, which the Finnish Meteorological Institute develops in collaboration with its European colleague institutes. To improve the associated accuracy, a brand new, more complex and expensive, option for processing aerosols in HARMONIE-AROME, is presented. This near-real-time (NRT) aerosol option integrates aerosol concentrations from Copernicus Atmospheric Monitoring Services' NRT forecast into HARMONIE-AROME. The statistical performance of the model's sea fog forecast in the Baltic Sea was studied in a case study using marine observations. The quantitative metric, proportion score, was studied. As a result, a forecast using the NRT option showed a slight deterioration in visibility (0.52 versus 0.59), a neutral improvement in cloud base height (0.52 versus 0.51), and a slight deterioration in 2-meter relative humidity (0.73 versus 0.76) forecasts with respect to the reference option. Furthermore, the score in general remained weak against observations in the case of visibility and cloud base height. In addition, based on qualitative analysis, the spatial coverage of the forecasted sea fog in both experiments was similar to the one observed by the NWCSAF Cloud Type-product. In total, the new aerosol option showed neutral or slightly worse model predictability. However, no strong conclusions should be made from this single experiment sample and more evaluations should be carried out.