Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Oksa, Ella"

Sort by: Order: Results:

  • Oksa, Ella (2024)
    Sobolev functions generalize the concept of differentiability for functions beyond classical settings. The spaces of Sobolev functions are fundamental in mathematics and physics, particularly in the study of partial differential equations and functional analysis. This thesis provides an overview of construction of an extension operator on the space of Sobolev functions on a locally uniform domain. The primary reference is Luke Rogers' work "A Degree-Independent Sobolev Extension Operator". Locally uniform domains satisfy certain geometric properties, for example there are not too thin cusps. However locally uniform domains can possess highly non-rectifiable boundaries. For instance, the interior of the Koch snowflake represents a locally uniform domain with a non-rectifiable boundary. First we will divide the interior points of the complement of our locally uniform domain into dyadic cubes and use a collection of the cubes having certain geometric properties. The collection is called Whitney decomposition of the locally uniform domain. To extend a Sobolev function to a small cube in the Whitney decomposition one approach is to use polynomial approximations to the function on an nearby piece of the domain. We will use a polynomial reproducing kernel in order to obtain a degree independent extension operator. This involves defining the polynomial reproducing kernel in sets of the domain that we call here twisting cones. These sets are not exactly cones, but have some similarity to cones. Although a significant part of Rogers' work deals extensively with proving the existence of the kernel with the desired properties, our focus will remain in the construction of the extension operator so we will discuss the polynomial reproducing kernel only briefly. The extension operator for small Whitney cubes will be defined as convolution of the function with the kernel. For large Whitney cubes it is enough to set the extension to be 0. Finally the extension operator will be the smooth sum of the operators defined for each cube. Ultimately, since the domain is locally uniform the boundary is of measure zero and no special definition for the extension is required there. However it is necessary to verify that the extension "matches" the function correctly at the boundary, essentially that their k-1-th derivatives are Lipschitz there. This concludes the construction of a degree independent extension operator for Sobolev functions on a locally uniform domain.