Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Parviainen, Katariina"

Sort by: Order: Results:

  • Parviainen, Katariina (2021)
    Tutkielmassa käsitellään avaruuden $\cc^n$ aitoja holomorfisia kuvauksia. Niiden määritelmät perustuvat aidon kuvauksen lauseeseen ja kuvausten holomorfisuuteen. Olkoon $\Omega,D\subset\cc^n$, ja olkoon $n>1$. Kuvaus $F:\Omega\to D$ on aito kuvaus, jos $F^{-1}(K)$ on kompakti $\Omega$:n osajoukko jokaiselle kompaktille joukolle $K\subset D$. Holomorfisuus tarkoittaa kuvauksen kompleksista analyyttisyyttä, kompleksista differentioituvuutta sekä sitä, että kuvaus toteuttaa Cauchy-Riemannin yhtälöt. Funktio $f$ on holomorfinen avaruuden $\cc^n$ avoimessa joukossa $\Omega$, jos sille pätee $f:\Omega\to\cc$, $f\in C^1(\Omega)$, ja jos se toteuttaa Cauchy-Riemannin yhtälöt $\overline{\partial}_jf=\frac{\partial f}{\partial\overline{z_j}}=0$ jokaiselle $j=1,\ldots,n$. Kuvaus $F=(f_1,\ldots,f_m):\Omega\to\cc^m$ on holomorfinen joukossa $\Omega$, jos funktiot $f_k$ ovat holomorfisia jokaisella $k=1,\ldots,m$. Jos $\Omega$ ja $D$ ovat kompleksisia joukkoja, ja jos $F:\Omega\to D$ on aito holomorfinen kuvaus, tällöin $F^{-1}(y_0)$ on joukon $\Omega$ kompakti analyyttinen alivaristo jokaiselle pisteelle $y_0\in D$. Aito kuvaus voidaan määritellä myös seuraavasti: Kuvaus $F:\Omega\to D$ on aito jos ja vain jos $F$ kuvaa reunan $\partial\Omega$ reunalle $\partial D$ seuraavalla tavalla: \[\text{jos}\,\{z_j\}\subset\Omega\quad\text{on jono, jolle}\,\lim_{j\to\infty}d(z_j,\partial\Omega)=0,\,\text{niin}\,\lim_{j\to\infty}d(F(z_j),\partial D)=0.\] Tämän määritelmän perusteella kuvausten $F:\Omega\to D$ tutkiminen johtaa geometriseen funktioteoriaan kuvauksista, jotka kuvaavat joukon $\partial\Omega$ joukolle $\partial D.$ Käy ilmi, että aidot holomorfiset kuvaukset laajenevat jatkuvasti määrittelyalueittensa reunoille. Holomorfisten kuvausten tutkiminen liittyy osaltaan Dirichlet-ongelmien ratkaisemiseen. Klassisessa Dirichlet-ongelmassa etsitään joukon $\partial\Omega\subset\mathbf{R}^m$ jatkuvalle funktiolle $f$ reaaliarvoista funktiota, joka on joukossa $\Omega$ harmoninen ja joukon $\Omega$ sulkeumassa $\overline{\Omega}$ jatkuva ja jonka rajoittuma joukon reunalle $\partial\Omega$ on kyseinen funktio $f$. Tutkielmassa käydään läpi määritelmiä ja käsitteitä, joista aidot holomorfiset kuvaukset muodostuvat, sekä avataan matemaattista struktuuria, joka on näiden käsitteiden taustalla. Tutkielmassa todistetaan aidolle holommorfiselle kuvaukselle $F:\Omega\to\Omega'$ ominaisuudet: $F$ on suljettu kuvaus, $F$ on avoin kuvaus, $F^{-1}(w)$ on äärellinen jokaiselle $w\in\Omega'$, on olemassa kokonaisluku $m$, jolle joukon $F^{-1}(w)$ pisetiden lukumäärä on $m$ jokaiselle $F$:n normaalille arvolle, joukon $F^{-1}(w)$ pisteiden lukumäärä on penempi kuin $m$ jokaiselle $F$:n kriittiselle arvolle, $F$:n kriittinen joukko on $\Omega'$:n nollavaristo, $F(V)$ on $\Omega'$:n alivaristo aina, kun $V$ on $\Omega$:n alivaristo, $F$ laajenee jatkuvaksi kuvaukseksi aidosti pseudokonveksien määrittelyjoukkojensa reunoille, $F$ kuvaa aidosti pseudokonveksin lähtöjoukkonsa jonon, joka suppenee epätangentiaalisesti kohti joukon reunaa, jonoksi joka suppenee hyväksyttävästi kohti kuvauksen maalijoukon reunaa, kuvaus $F$ avaruuden $\cc^n$ yksikköpallolta itselleen on automorfismi.