Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Pietarinen, Paavo"

Sort by: Order: Results:

  • Dufva, Olli; Kankainen, Matti; Kelkka, Tiina; Sekiguchi, Nodoka; Awad, Shady; Eldfors, Samuli; Yadav, Bhagwan; Kuusanmäki, Heikki; Malani, Disha; Andersson, Emma; Pietarinen, Paavo; Saikko, Leena; Kovanen, Panu; Ojala, Teija; Lee, Dean; Loughran, Thomas; Nakazawa, Hideyuki; Suzumiya, Junji; Suzuki, Ritsuro; Ko, Young Hyeh; Kim, Won Seog; Chuang, Shih-Sung; Aittokallio, Tero; Chan, Wing; Ohshima, Koishi; Ishida, Fumihiro; Mustjoki, Satu (2019)
    Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malig- nancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epi- genetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.
  • Pietarinen, Paavo (2012)
    Most xenobiotics are biotransformed by phase I enzymes to a more hydrophilic form in order to get excreted out from the body. In most cases xenobiotics are in lipophilic form when entering body. The most important group in phase I enzymes is cytochrome P450 (CYP) superfamily. Of CYP enzymes probably the most studied is CYP2D6, which is responsible for metabolism of 20-25% of drugs currently on market. Many CYP2D6 substrates belong to therapeutically important drug groups, such as antiarrhytmics, antidepressants, beta-blockers, or neuroleptics. CYP2D6 gene, which encodes the enzyme, exhibits large interindividual variability, which has an effect on the metabolic activity of the enzyme. The frequencies of these genetic variances differ globally on wide scale between and inside populations. Through genotyping it is possible to predict the CYP2D6 metabolic rate, which can be divided into four classes: ultra-rapid metabolizers (UM), extensive metabolizers (EM), intermediate metabolizers (IM), and poor metabolizers (PM). The purpose of our study was to examine the frequencies of CYP2D6 genotypes in Finnish population in detail and compare the results to previous studies. Our study population consisted of 857 healthy volunteers whose DNA was extracted. From DNA sample we genotyped 10 different CYP2D6 genetic variants and the copy number of the gene using Applied Biosystems TaqMan genotyping and copy number assays. This study was the largest CYP2D6 genotype frequency study in Finnish population so far. The results supported the findings of a similar study in a Finnish population of smaller scale. Large majority of study subjects were EMs (87.3%) and the second largest group was Ums (7.2%). IMs and PMs were in clear minority (3.0% and 2.5%, respectively). The expected frequencies for UMs (1-2%) are much lower and for PMs higher (~8%) in other North European populations than in Finns. Accordingly, CYP2D6 genetic profile of Finnish population differs from its neighbours, which may be important for the dose requirements, efficacy, and safety for drugs metabolized by CYP2D6.