Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Sorokina, Dina"

Sort by: Order: Results:

  • Sorokina, Dina (2015)
    Lactic acid bacteria (LAB) are generally recognized as safe micro-organisms and used in food preservation and as health promoting probiotics. Beside lactic acid, LAB produce several antimicrobial compounds of which especially bacteriocins provide new potential applications for food and pharmaceutical industries. Bacteriocins are ribosomally synthetized proteins or peptides with antimicrobial activity usually against closely related species. Whole genome sequencing project of lactic acid bacterium Lactococcus lactis N8 has revealed a new bacteriocin operon which consists of a bacteriocin gene and ABC transporter genes. Similar operon has been also found in several other L.lactis strains including IL1403. Peptides expressed by these bacteriocin genes belong to lactococcin 972 protein family according to their amino acid sequences. In this master’s thesis, these novel bacteriocin genes from L. lactis N8 and IL1403 were cloned into Escherichia coli with plasmid vectors. New bacteriocins were named encacin A and B. Strong inducible promoters were chosen to achieve high bacteriocin production. Encacins were expressed in cytosolic and periplasmic spaces to compare the effect of localization on antimicrobial activity of peptides. The prevalence of encacin genes among different L. lactis strains was also studied. Four of ten E. coli recombinant strains constructed during this study were shown to produce bacteriocins. Two of them, which produced encacins into periplasmic space, also appeared to be weakly active against L. lactis MG1614 strain. Therefore it seems that localization of encacins in E. coli bacterial cell has an impact on the bioactivity of peptides. Screening of bacteriocins genes showed that over 90 % of L. lactis stains bear encacin genes, from which encacin B is the more frequent form. More precise characterization of encacin genes and peptides may help to gain new information about qualities and mode of action of these novel potential bacteriocins.