Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Ta, Anh"

Sort by: Order: Results:

  • Ta, Anh (2020)
    Most online fraud involves identity thief, especially in financial services such as banking, commercial services, or home security. Passwords have always been one of the most reliable and common way to protect user identities. However, passwords can be guessed or breached. Biometric authentications have emerged to be a compliment way to improve the security. Nevertheless, biometric factors such as fingerprint or face recognition can also be spoofed. Additionally, those factors require either user interaction (touch to unlock) or additional hardware (surveillance camera). Therefore, the next level of security with lower risk of attack and less user friction is essentially needed. gait authentication is one of the viable solutions since gait is the signature of the way humans walk, and the analysis can be done passively without any user interactions. Several breakthroughs in terms of model accuracy and efficiency were reported across several state-of-the-art papers. For example, DeepSense reported the accuracy of 0.942±0.032 in Human Activity Recognition and 0.997±0.001 in User Identification. Although there have been research focusing on gait-analysis recently, there has not been a stan- dardized way to define proper testing workflow and techniques that are required to ensure the correctness and efficiency of gait application system, especially when it is done in production scale. This thesis will present a general workflow of Machine Learning (ML) system testing in gait au- thentication using V-model, as well as identifying the areas and components that requires testing, including data testing and performance testing in each ML-related components. This thesis will also suggest some adversarial cases that the model can fail to predict. Traditional testing technique such as differential testing will also be introduced as a testing candidate for gait segmentation. In addition, several metrics and testing ideas will also be suggested and experimented. At last, some interesting findings will be reported in the experimental results section, and some areas for further future work will also be mentioned.