Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Tenkanen, Henrikki"

Sort by: Order: Results:

  • Tenkanen, Henrikki (2013)
    A vast amount of spatio-temporal data has become available with the fast development of information technology and different monitoring systems over the last two decades. Position-aware devices are one of the most dominant sources for collecting movement data. Spatio-temporal information that is derived from the tracking devices enable to build movement patterns from the targets, and to calculate measurable motion parameters such as speed, change of speed or the direction of movement. This study utilized a specific pilot GPS-based monitoring system called Amazonian Riverboat Observation System (AROS) that was built to collect movement data of the local riverboats on the departments of Loreto and Ucayali in Peruvian Amazonia. AROS provides real-time GPS-data with coordinates and timestamp that indicate where and when the collaborating vessels are navigating. As an outcome of this thesis a specific analytical tool called Trajectory Reconstruction and Analysis Tool (TRAT) was developed. TRAT utilizes variety of geographic knowledge discovery methods to extract knowledge from movement data provided by AROS. Also spatio-temporal transportation characteristics in the study area were analyzed based on AROS data from the year 2012 and utilizing TRAT. This thesis focused on studying if there is seasonal and directional variation in transportation characteristics along the Amazonian rivers, and if river morphology affects the navigation. Also connection between water height of the rivers and travel speed of individual journeys was studied. Results of the thesis suggest that navigation along the rivers has seasonal and directional variation, and also the river morphology seems to affect the movement patterns of the vessels. On navigation route that was mostly meandering by river morphology, the downstream navigation was over 40% faster than upstream navigation during high water and intermediate, but during low water there was no difference between navigation directions. Seasonal variation was over 30% faster during high water compared to low water (on downstream direction). On upstream direction the navigation was fastest during low water but seasonal differences were considerably lower compared to downstream navigation. On navigation route that was mostly anastomosing by river morphology, the downstream navigation was approximately 20 % faster during the entire year. Results suggest that there is no seasonal difference in navigation characteristics along the larger and wider rivers, since the travel speeds were quite similar throughout the year. Fitting simple regression model between average travel speed of the journeys and water levels of the river revealed that there seems to be strong connection between travel speed and river height on the route along Ucayali river when travelled downstream (R2=0.73). On other cases that were studied, the results suggest that there is not connection between travel speed characteristics and river height. Comparing the results with earlier studies implied that the results of this thesis seemed to be fairly accurate. However, it is necessary to validate the results by doing cross-validations between data from different years observed with AROS. Transportation is in a key role when trying to find the factors affecting on development of a certain location. Thus transportation as means of accessibility has significant role in variety of contexts such as conversation, land use changes and deforestation. Results of this study could provide more accurate data for studies focusing on previously mentioned topics in the study area. Also utilization of TRAT in other contexts, such as studying global transportation patterns of professional vessels, could be possible by making few modifications to the tool.