Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Tikka, Sauli"

Sort by: Order: Results:

  • Tikka, Sauli (2017)
    Tutkielmassa pyritään vastaamaan kysymykseen siitä, minkä ulottuvuuden euklidiseen avaruuteen voidaan määritellä bilineaarinen binäärioperaatio siten, että euklidinen avaruus varustettuna tällä laskutoimituksella on jakoalgebra. Työssä ei pyritä täydelliseen vastaukseen vaan päätavoitteena on antaa kysymykseen välttämätön ehto: avaruuden ulottuvuuden täytyy olla luvun kaksi potenssi. Tutkielman johdannossa esitellään ongelma ja annetaan esimerkki siitä, että kolmiulotteisessa avaruudessa ei jakoalgebran rakennetta voida saavuttaa. Työn ensimmäisessä varsinaisessa luvussa esitellään tarpeellinen määrä kategoriateoriaa, jotta algebralliselle topologialle tyypilliset kategorioihin ja funktoreihin liittyvät argumentit joita tutkielmassa käytetään, ovat perusteltuja. Lisäksi määritellään niin kutsuttu Hom-funktori ja esitellään sen perusominaisuuksia. Kyseisen funktorin soveltaminen, dualisointi, johtaa yksinkertaisella tavalla yleisen ketjukompleksin kohomologiaryhmiin. Tässä kohtaa työtä tulee selväksi, että dualisaatio säilyttää lukuisia homologiateoriasta tunnettuja ominaisuuksia ja konstruktioita. Luvun työläin ja tärkein osuus on universaalin kerrointeoreeman todistus. Kyseinen lause selvittää yhteyden kohomologia- ja homologiaryhmien välille ja antaa tavan laskea ketjukompleksin kohomologia- ryhmät sen homologiaryhmien avulla. Luvun loppupuolella esitellään yleisen kohomologiateorian aksiomaattinen määritelmä, jota tarvitaan myöhemmin tutkielmassa sekä tutustutaan tavallisimpiin kohomologiateorioihin. Näitä ovat muun muassa singulaarinen kohomologia ja solukohomologia. Kohomologiaryhmien perustietoihin tutustumisen jälkeen tutkielman neljännessä luvussa aletaan käsittelemään kohomologiaryhmille määriteltyä uutta laskutoimitusta, kuppituloa. Tämä on keskeinen käsite kohomologiateorian kannalta sillä se on varsinaisesti ensimmäinen täysin uusi asia verrattuna homologiateoriaan. Osoitetaan, että kuppitulo määrittelee kohomologiaryhmien porrastettun kertolaskun ja että varustamalla kohomologiaryhmistä muodostettu suora summa tällä laskutoimituksella lopputuloksena on porrastettu rengas, avaruuden kohomologiarengas. Muutaman valottavan esimerkin ja kuppitulon luonnolliseksi toteamisen jälkeen, näytetään että kuppitulo on antikommutatiivinen laskutoimitus jos kerroinrengas on kommutatiivinen. Tutkielman viimeisessä luvussa on kenties työn raskaimmat laskut. Luvun alkupuoli painottuu kahden avaruuden muodostaman tulojoukon kohomologiarenkaan laskemiseen. Künnethin kaava näyttää, että tietyin oletuksin kahden avaruuden kohomologiarenkaiden tensoritulolta tuloavaruuden kohomologiarenkaalle määritelty ristitulokuvaus on rengasisomorfismi. Lopulta laskemme projektiivisen avaruuden kohomologiarenkaan. Soveltamalla tätä tietoa ja Künnethin kaavaa jakoalgebran määräävän bilineaarisen binäärioperaation indusoimaan kohomologiakuvaukseen, saadaan vastaus johdannossa esitettyyn kysymykseen.