Browsing by discipline "Skoglig marklära"
Now showing items 1-1 of 1
-
(2009)There are several reasons for increasing the usage of forest biomass for energy in Finland. Apart from the fact that forest biomass is a CO2 -neutral energy source, it is also a domestic resource distributed throughout the country. Usage of forest biomass in the form of logging residues decreases Finland’s dependence of energy import and increases both incomes and employment. Wood chips are mainly made from logging residues, which constitute 64 % of the raw material. A large-scale use of forest biomass requires heed also to the potential negative aspects. Forest bioenergy is used extensively, but its impacts on the forests soil nutrition and carbon balance has not been studied much. Nor have there been many studies on the heavy metal or chlorine content of logging residues. The goal of this study was to examine the content of carbon, macronutrients, heavy metals and other for the combustion harmful substances in Scots pine and Norway spruce wood chips, and to estimate the effect of harvesting of logging residues on the forests carbon and nutrient balance. Another goal was to examine the energy content of the clear cut remains. The Wood chips for this study were gathered from pine and spruce dominated clear cut sites in southern Finland, in the costal forests between Hankoo and Siuntio. The number of sample locations were 29, and the average area was 3,15 ha and the average timber volume 212,6 m3 ha -1. The average logged timber volume was for Scots pine timber 70 m3 ha -1 and for Norway spruce timber 124 m3 ha -1 and for deciduous timber (birch and alder) 18,5 m3 ha -1. The proportion of spruce in the logging residues and the stand-volume were relevant for how much nutrients were taken from the forest ecosystem when harvesting logging residues. In this study it was noted that the nutrient content of the logging residues clearly increased when the percentage of spruce in the timber volume increased. The S, K, Na and Cl -contents in the logging residues in this study increased with an increasing percentage of spruce, which is probably due to the fact that the spruce is an effective collector of atmospheric dry-deposition. The amounts of nutrients that were lost when harvesting logging residues were less than those referred to in the literature. Within a circulation period (100 years), the forest soil gets substantially more nutrients from atmospheric deposition, litter fall and weathering than is lost through harvesting of logging residues after a clear cut. Harvesting of the logging residues makes for a relatively modest increase of the quantity of carbon that is removed from the forest compared to traditional forestry. Due to the fact that the clear cut remains in my study showed a high content of chlorine, there is a risk of corrosion in connection to the incineration of the logging residues in power plants especially at coastal areas/forests. The risk of sulphur -related corrosion is probably rather small, because S concentrations are relatively low in woodchips. The clear cut remains showed rather high heavy metal contents. If the heavy metal contents in this study are representative for the clear cut remains in the coastal forests generally, there might be reason to exert some caution when using the ash for forest fertilizing purposes.
Now showing items 1-1 of 1