Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Biogeokemialliset kierrot"

Sort by: Order: Results:

  • Nieminen, Elina (2022)
    The legislation of the Paris Agreement obliges Finland to pursue actions that keep the global average temperature rise below 2°C and aim to limit the average temperature rise to 1.5°C. The current Finnish government has aligned the national goal of carbon neutrality by 2035. The role of municipalities in promoting or compensating carbon sinks has not yet been defined, although municipalities play an important role as a platform for climate work at local and regional levels. However, it is already known that the Finnish National Climate Act, which is being reformed at this moment, will be subject to an obligation to produce their own climate programs at municipal, regional or provincial level. Environmental competence and environmental development have been important in Lahti for several decades already. The City of Lahti has set its target for carbon neutrality for 2025 and it includes targets for reducing, compensating, and increasing carbon sinks. This work focused on the examination of carbon sequestration and sinks in an urban environment in Lahti, in the example area of approximately 82 hectares, through which a wider understanding of the city's potential to grow coal stocks and sinks in a tight urban structure within different land use classes and different ground cover between them. Based on the Finnish Environment Agency's CORINE land cover classification, the current potential of carbon sequestration for urban land use classes were calculated in this work and the actions to increase carbon sequestration capacity were identified. The work examined the availability of the finished spatial data and to supplement incomplete information, existing literature on the topic was used, as well as other existing spatial records of the city of Lahti and previously made surveys. The largest carbon sink was observed in forest areas, of which in mixed forests representing the largest forest type in the area. Through the calculations and literature carbon sinks and stocks in residential areas were also found to be significant in terms of vegetation, as well as in terms of soil based on the literature review. In planting street and park trees for the purpose of increasing the carbon sink, the most important thing was found to be the long lifetime of trees and securing it. Growing of carbon sinks is most effective in areas where carbon sequestration is already at a high level but increasing vegetation cover in all urban land covers will increase the carbon sink in the long run. One major conclusion of the work was that Lahti's current method of determining carbon sinks and stocks has been inadequate at least for the determining them in built areas, and future measures to maintain, preserve and increase carbon stocks and sinks would not be seen by the same calculation method in the computing. In general, the research data and methods are still largely based on observations and results from the operational processes of natural ecosystems, and these are utilized in urban planning, construction, and maintenance of urban green areas. An incomplete knowledge of the ecological processes in urban areas is a problem that produced challenges in this work as well. More research data is needed on carbon sinks in urban land use classes to gain a more secure understanding of carbon sinks and stocks, although the common importance of vegetation in urban areas is already clear. Although the work focused on carbon in an urban environment, it is necessary to remember the diversity of the urban environment and the other ecosystem services it produces. Land use planning, as well as the management of green spaces in the urban environment, can enhance both the size of carbon storages and sinks and biodiversity and they do not have to be entirely separate from each other.