Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Nordic Master Programme in Environmental Changes at Higher Latitudes"

Sort by: Order: Results:

  • Folestad, Magdalena (2022)
    The study is sought to study how and if the environment has changed in eastern Finnish Lapland in a long-term perspective. Variables related to the current state of the environment, are atmospheric composition and aerosols, meteorology, and biology. The study is based on measurements from Värriö Subarctic Research station for the years 1973 to 2021. Included in atmospheric composition, are the atmospheric anthropogenic gas concentrations of CO, NOx, O3 and SO2. SO2 is also used in a proxy to estimate H2SO4 concentrations. Decreasing long-term trends are found for CO, NOx, SO2 and H2SO4. The decreasing emissions from Kola peninsula, is the cause for long-term decrease of SO2, which result in decreasing H2SO4 concentrations. Results of particle size distribution show an increasing concentration of small particles and decrease of large particles. Decline of particles leads to less NPF, CCN and will resultingly influence cloud properties. Air temperature has increased 2.38 °C and snow cover days have decreased by three weeks, between 1975 and 2021. Snow depth and precipitation show less significant changes. Heat sum have from 1981 to 2021 increased with 247 °C days, indicating more active and growing trees. Birch leave development show indications of leave burst and developed leaves to occur at earlier date, over the years 1981-2021. Grouses, shorebirds, and cavity-nesters show large inter-annual variations. Some of the bird species appears to benefit from environmental changes while others appear to have difficulty adapting.
  • Gunnlaugsdóttir, Eyrún Gyða (2022)
    Biological soil crust, biocrust, is a significant contributor to biogeochemical cycles through nitrogen and carbon cycling. Further, it stabilizes soil, facilitates water infiltration, and mitigates soil erosion. The global biocrust cover is believed to decrease by about 25-40% in the next 60 years due to climate change and intensification in land use. Research on biocrust in arctic and subarctic regions is limited, much of the knowledge comes from lower latitudes in arid and semiarid ecosystems. Cold-adapted biocrust might respond differently to increasing temperatures when compared with warm-adapted biocrust. Therefore, it is fundamental to research biocrust in arctic and subarctic regions when looking at how fast the climate is changing in the Northern hemisphere. Temporal variations of soil respiration in subarctic biocrust have not been studied systematically before. This research project focuses on the effects of warming on soil respiration in biocrust, on a diurnal and a seasonal scale. It also focuses on species composition changes of vascular plants in the warming experiment where warming was induced with open-top chambers (OTCs). Soil respiration, temperature, soil water content, as well as plant species composition changes were measured during three field trips that each lasted four days during the growing season of 2021. The results show that soil respiration was lower in September when compared with measurements done in June and July. The highest values of soil respiration were observed during mid-day and the lowest during evenings and nights. The temperatures of OTC plots were, on average, 1.16 °C higher than control plots, and OTC plots had significantly lower soil water content than control plots. During this research, the soil respiration increased with higher temperature but was not different between control and OTC plots during any time of day or month measured. Soil water content did not affect soil respiration significantly, while temperature did. These findings might be explained by less soil water content within warmer plots, but warmth and moisture have been shown to increase soil respiration. In other words, less soil water content might countereffect the increase of soil respiration due to warming. Some vascular plant species were more likely to be found within or outside the warming plots. Dwarf willow, Salix herbacea, decreased in cover within OTC plots. Previous research has shown that warming significantly reduces pollen shed and time of pollen shedding for S. herbacea, which might decrease its abundance within OTC plots. Alpine bistort, Bistorta vivipara, increased in cover within OTC plots compared to control plots. Warming experiments on B. vivipara have shown positive effects on reproductive parameters, which might increase its abundance within warmed OTC plots. Sheep also prefer grazing on B. vivipara. Therefore, it might have less cover in control plots, given that OTCs exclude grazing and that many sheep roam the studied site during the growing season. Vascular plant cover was greater within control plots when compared with warmed plots. Previous results at the same site after one year of warming, from summer 2019, showed more vascular plant cover within the OTC plots when compared with control plots. The results of this research might indicate that vascular plants are gradually affected by the warming and are transitioning towards a new equilibrium. The results of this research are ground for further studies on subarctic ecosystems dominated by biocrust. Many biotic and abiotic factors affect carbon cycles. For future modelling of predicted effects of climate change, having better knowledge on how subarctic ecosystems respond to warming is essential for a better understanding of the functions and feedbacks in a global context.
  • Escanciano Gomez, Alfredo (2022)
    The Baltic Sea is undergoing changes due to climate change, including an increase in its temperature. This may in turn lead to changes in the traits of the species that inhabit it, including non-endemic, invasive species. Palaemon elegans is a species native to the Atlantic Ocean that has been present in the Baltic Sea since the beginning of this century. Abilities such as high thermal tolerance make it successful in colonising new ecosystems like the brackish waters of this sea. However, less is known about the behavioural traits’ adaptions to these changes. This study aims then to find out how climate change may affect the behaviour of this species. To do so, five behaviours expressed by this species were observed and analysed to see how temperature change, seabed composition and body size influence their expression. The behaviours analysed were aggressiveness, movement frequency, reaction to food stimulus, number of feeding interactions and shelter-seeking. Analyses were conducted using ten-minute videos with ten specimens of P. elegans placed in water tanks and interacting in ecosystems representations with elements typical of the seabed where this species lives, both vegetation and rocks. Student's t-tests in R were then performed to test the significance of possible differences between the behaviours studied and the three parameters that may influence their expression. The results obtained show that the increase in water temperature might indeed lead to an increase in the frequency of the five behaviours studied except in aggressiveness. On the other hand, it was found that the composition of the ecosystem does not have a significant influence overall, while body size has a major influence on feeding related behaviours. Therefore,knowing more about changes in the behavior of species susceptible to climate change can be helpful to understand how biodiversity and its distribution will vary in the not so distant and changing future and what consequences it may generate at the ecosystem level.
  • Thrandardottir, Maria Run (2022)
    The aim of this thesis is to tie the knot of art and science, searching for ways to explain and explore complex atmospheric phenomena through art. Primary methods of research are poetry, video and performance art practice. The results of this thesis are five video performance art works as well as five related poems: Listening Again, Coffee Filter, Repetition, Reflection and Snow Angel created in Iceland and Finland from August 2021 until April 2022, focused on atmospheric science. The results are divided into six sections, addressing six aspects of the traditional scientific method to explain my art works. At the same time, I ask the reader to think about the scientific methods in a different way and how can they be expanded? I connect Listening Again to hypothesis, Coffee Filter is related to field work, Repetition is about laboratory work, Reflection about data analysis and Snow Angel about interpreting the results. Finally I compile how the art works were presented at the IBA-Permafrost Snow Seminar, April 1st 2022 at the Finnish Meteorological Institute as the exhibition “Particles of Sensing”. The performances are all influenced by science in addition to their connection to scientific methods. Listening Again is sparked by mineral dust research in Iceland. Coffee Filter is derived from research of Saharan Dust in Finland and the coffee filter sampling method. Repetition deals with dedication to the laboratory, invigorated by transmittance research of black carbon and Reflection spurs from ice nucleation research. Snow Angel was an emotional life performance, a farewell ceremony of the changing cryosphere. Rather than using my art to explain the science, as in scientific communication, the artworks in this artistic research are on one hand inspired by the scientific research and methods and on the other hand they approach atmospheric science with different research questions, with different methods, gaining different results. The artistic background of this thesis will be written through chosen works by several relevant artists. I will dive into the research and repetitional element in my works and compare them to works by Anna Líndal’s, explain the use of the wedding gown as a symbol in the works by Zaituna Kala and Kong Ning and discuss performance and devotion in works by artist Marina Abromović. Furthermore, the thesis as a whole can be thought of as an art piece: a hypothetical marriage contract or manifesto of my commitment and devotion to the lab. This is a journey of becoming completely devoted to what you love, using the phrase “being married to the lab” from various angles, as an inspiration I play on and think about both during the creation of the art works and thesis. Future prospects for this artistic research is to continue exploring atmospheric science through art, expanding it in more arctic countries and contexts and exhibiting to a wider audience. So far I have created two new works and direct products of this thesis. A love relationship with Science was shown at the Arctic Festival, Iðnó Reykjavík, 17/09/22. I created the video performance Red Thread in Greenland in August 2022, a tribute to the effects of the changing ocean and oceanic folk stories. Red thread will be presented alongside the works in this thesis at the Oodi public library, Helsinki on the 7th-9th of October, 2022. Who knows where this research will take me after that.