Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "CVHD. Molecular Dynamics. Surface Diffusion. Iron. Copper. Computational Physics. Laskennallinen materiaalifysiikka. Beräkningsmaterialfysik. Computational Materials Physics"

Sort by: Order: Results:

  • Lindblad, Victor (2022)
    This thesis is aimed to explore the topic of surface diffusion on copper and iron surfaces, using an accelerated molecular dynamics (MD) method known as collective variable-driven hyperdynamics (CVHD). The thesis is divided into six main sections: Introduction, Theory, Methods, Simulations, Results and Conclusion. The introduction briefly explains the main interest behind the topic and why diffusion is a difficult subject for classical MD simulations. In the theory section, the physical description of diffusion in metals is explained, as well as the important quantities that can be determined from these types of simulations. The following section dives into the basics concerning the molecular dynamics simulations method. It also gives a description of the theoretical basis of collective variable-driven hyperdynamics and how it is implemented alongside molecular dynamics. The simulations section more technically explains the system building methodology, discusses key parameters and gives reasoning for the chosen values of these parameters. Since, both copper and iron systems have been simulated, both sets of systems are explained independently. The results section displays the results for the copper and iron systems separately. In both sets of systems, the obtained activation energy of the dominant diffusion mechanisms remain the main point of focus. Lastly, the results are dissected and summarized.