Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Ozonolysis"

Sort by: Order: Results:

  • Vinkvist, Netta (2024)
    Aerosol particles are a significant factor both environmentally and in terms of health. They can influence climate change in various ways: certain aerosol particles contribute to warming the atmosphere, while others may have a cooling effect. The concentration of secondary organic aerosol (SOA) in the atmosphere is significant, thus playing a crucial role in the climate. SOA can influence the temperature of the climate and the chemistry of the atmosphere. SOA are formed through the oxidation of volatile organic compounds (VOCs), creating a complex mixture of various less volatile organic compounds with diverse properties. Highly oxygenated organic molecules, products of VOC oxidation, are estimated to explain a substantial part of SOA formation. To assess the climate impacts accurately, it is essential to comprehend the characteristics of SOA in the atmosphere. The aim of the thesis was to investigate the influence of temperature and prefence of dimethyl sulfide (DMS) on the gas-phase oxidation products of VOCs, especially how temperature affects the formation of accretion products. The compounds and ozone reacted in a flow tube, and the resulting oxidation products were ionized by clustering them with reagent ions. The mass-to-charge ratio of the formed charged clusters was then measured with orbitrap mass spectrometer. Identifiable oxidation products were selected based on studies by Rissanen et al. [2014] and Tomaz et al. [2021], and the previously described products in these studies were followed using the Orbitool program. The starting materials used in this thesis were cyclohexene, deuterated cyclohexene, and limonene, which were oxidized in the presence of ozone. Several oxidation products were observed in the measurements that were expected to form based on literature. However, mass spectra also revealed that the reaction time with deuterated cyclohexene might have been too short. With a longer reaction time, the molecules could have undergone further oxidation, allowing better detection of oxidation products. In the thesis, it was observed that temperature influences the formation of oxidized products; as the temperature increases, oxidation reactions progress further in 2.7 s reaction time. Monomers that underwent more extensive oxidation could form more highly oxidized accretion products. DMS likely reacts with hydroxyl radicals, thereby influencing the oxidation of VOC compounds in the flow tube. Measurements conducted with DMS may result in the formation of more organic alkoxy radicals than organic peroxy radicals, which could undergo further oxidation.