Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Svalbard"

Sort by: Order: Results:

  • Lunde, Andreas (2023)
    Macrozooplankton is an understudied size class of plankton in the Arctic, but even though species composition is similar around the Svalbard archipelago, the relative composition can act as a proxy for climate change. This study investigated if the fjords around Svalbard are similar in species composition and if any differences could be explained. 11 fjords were sampled with a focus on common and indicator species in terms of abundance, relative composition and length distribution. I found low presence of T.libellula and high abundances of T.abyssorum and T.inermis. T.abyssorum was the only species whos abundance was significantly correlated to water mass (Atlantic water), but T.libellula, T.abyssorum, T.inermis, T.longicaudata and A.digitale all showed significant differences in length distribution. This study provides further understanding of species composition in the different high Arctic fjords around Svalbard.
  • Lakka, Hanna-Kaisa (2013)
    Lepidurus arcticus (Pallas, 1793) is a keystone species in High Arctic ponds, which are exposed to a wide range of environmental stressors. This thesis provides information on the ecology of this little studied species by paying particular focus on the sensitivity of L. arcticus to acidification and climate change. Respiration, reproduction, olfaction, morphology, salinity and pH tolerance of the species were studied in the laboratory and several environmental parameters were measured in its natural habitats in Arctic ponds. Current global circulation models predict 2–2.4 °C increase in summer temperatures on Spitsbergen, Svalbard, Norway. The L. arcticus respiration activity was tested at different temperatures (3.5, 10, 16.5, 20, 25 and 30 °C). The results show that L. arcticus is clearly adapted to live in cold water and have a temperature optimum at +10 °C. This species should be considered as stenothermal, because it seems to be able to live only within a narrow temperature range. L. arcticus populations seem to have the capacity to respond to the ongoing climate change on Spitsbergen. Changes can be seen in the species' reproductive capacity and in the individuals' body size when comparing results with previous studies on Spitsbergen and in other Arctic areas. Effective reproduction capacity was a unique feature of the L. arcticus populations on Spitsbergen. L. arcticus females reached sexual maturity at a smaller body size and sexual dimorphism appeared in smaller animals on Spitsbergen than anywhere else in the subarctic or Arctic regions. L. arcticus females were able to carry more eggs (up to 12 eggs per female) than has been observed in previous studies. Another interesting feature of L. arcticus on Spitsbergen was their potential to grow large, up to 39.4 mm in total length. Also cannibalistic behaviour seemed to be common on Spitsbergen L. arcticus populations. The existence of different colour morphs and the population-level differences in morphology of L. arcticus were unknown, but fascinating characteristic of this species. Spitsbergen populations consisted of two major (i.e. monochrome and marbled) and several combined colour morphs. Third interesting finding was a new disease for science which activated when the water temperature rose. I named this disease to Red Carapace Disease (RCD). This High Arctic crustacean lives in ponds between the Arctic Ocean and glaciers, where the marine environment has a strong impact on the terrestrial and freshwater ecosystems. The tolerance of L. arcticius to increased water salinity was determined by a LC50 -test. No mortality occurred during the 23 day exposure at low 1–2 ‰ water salinity. A slight increase in water salinity (to 1 ‰) speeded up the L. arcticus shell replacement. The observations from natural populations supported the hypothesis that the size of the animals increases considerably in low 1.5 ‰ salt concentrations. Thus, a small increase in water salinity seems to have a positive impact on the growth of this short-lived species. Acidification has been a big problem for many crustaceans, invertebrates and fishes for several decades. L. arcricus does not make an exception. Strong acid stress in pH 4 caused a high mortality of mature L. arcticus females. The critical lower limit of pH was 6.1 for the survival of this acid sensitive species. Thus, L. arcticus populations are probably in danger of extinction due to acidification of three ponds on Spitsbergen. A slight drop (0.1–1.0) in pH values can wipe out these L. arcticus populations. The survival of L. arcticus was strongly related to: (1) the water pH, (2) total organic carbon (TOC) and pH interaction, (3) the water temperature and (4) the water salinity. Water pH and TOC values should be monitored in these ponds and the input of acidifying substances in ponds should be prevented.
  • Malinen, Lauri (2024)
    The Early Cretaceous igneous rocks in the circum-Arctic, collectively referred to as the High Arctic Large Igneous Province, are predominantly manifested on Svalbard as dolerite intrusions, classified as the Diabasodden Suite. The well-exposed intrusions in the Grønsteinfjellet- Botneheia study area, Svalbard, provide a window to a magmatic plumbing system, which has not been previously thoroughly studied. Samples collected in 2022 and 2023 were analysed for whole-rock major and trace element geochemistry. Additionally, two thin sections were studied petrographically and analysed for mineral chemistry. Geochemical data were used to model fractional crystallization, calculate primary melt composition and depth of crystallization for clinopyroxene. Stratigraphical maps and available elevation data were used to estimate the final emplacement depths of the intrusions. The geochemistry of the intrusions represents well-evolved tholeiitic basalts. The primary melt composition, with a minimum MgO content of 13.8 wt.%, suggests 45 mol% fractional crystallization before reaching a composition similar to the most primitive sample. Whole-rock major and trace element data, supported by the modelled fractional crystallization, indicate that fractional crystallization has been the primary magmatic differentiation process, while complex zoning and mineral chemistry suggest additional differentiation processes, such as magma mixing. Over-enrichment of K, Rb and Ba, implies crustal contamination. The presence of amygdales and depletion of mobile elements K and Rb indicate hydrothermal alteration. Thermobarometric calculations suggest multi-stage crystallization at depths from 2.8 to 11.2 km. The final emplacement depths were estimated to range from 230 to 560 m, based on elevation differences with the coeval Helvetiafjellet Formation. These findings propose that the Grønsteinfjellet-Botneheia intrusions underwent various and extensive differentiation processes before being emplaced in a shallow environment.