Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "biopreservation"

Sort by: Order: Results:

  • Marin, Daniel (University of HelsinkiHelsingin yliopistoHelsingfors universitet, 2006)
    Sekä bakteriosiinit että niitä tuottavat bakteerit pystyvät tietyissä olosuhteissa estämään tautia aiheuttavien bakteerien kasvua, joten niiden käytön ansiosta tuotteen turvallisuus ja säilyvyys paranee. Jos em. bakteriosiinit yhdistetään kemiallisiin aineisiin, joilla on myös kyky parantaa säilyvyyttä, ne voivat yhdessä toimia synergistisesti ja rajoittaa esimerkiksi Listeria sp., Clostridium sp., koliformien ja enterokokkien kasvua. Myös fysikaaliset menetelmät, kuten kevyt lämpö tai sous-vide-valmistustapa parantavat bakteriosiinien hyödyllisiä vaikutuksia. Yhdistettäessä bakteriosiinit kelatoreihin, on todettu, että ne ovat hyödyllisiä jopa ihmisen mahahaavan sekä lehmän utaretulehduksen hoidossa. Yleensä bakteriosiinit lisätään tuotteisiin joko puhdistettuina ja kuivina tai bakteriosiinia tuottavan kannan muodossa. Kuitenkaan "in vivo" tulokset eivät aina täsmää "in vitro" saatujen tulosten kanssa, koska bakteriosiinia tuottavat bakteerit ovat inaktivoituneet tai inhiboitu tai niiden kyky muodostaa bakteriosiineja on heikentynyt kasvuympäristön epäsuotuisien olosuhteiden johdosta. Edellä mainittujen seikkojen lisäksi joitakin bakteriosiineja saatetaan käyttää liian pieninä annoksina, koska ne muuttavat kasvualustan aistinvaraisia ominaisuuksia. Luonteeltaan bakteriosiinit ovat valkuaisaineita tai peptidejä ja siksi herkkiä proteolyyttisten entsyymien vaikutuksille sekä hapettumiselle, joten lihassa niiden jakautuminen ja liukoisuus on joskus heikkoa. Lisäksi joillakin tautia-aiheuttavista bakteereista, kuten Listerialla, on vaihteleva herkkyys bakteriosiineihin ja teollisuusympäristössä ne muodostavat joskus resistenttejä mutantteja. Joskus bakteriosiinien inaktivoituminen johtuu niiden sitoutumisesta kasvualustan elementteihin. Tästä seuraa, että ennen bakteriosiinien lisäämistä tuotteeseen, sen rakenteen, pH:n, veden aktiivisuuden sekä suolan määrää on syytä arvioida. Jotta elintarvikkeiden aistinvaraiset ominaisuudet eivät muuttuisi tai bakteriosiinit eivät menettäisi suojaavaa kykyään (elintarvikkeen rakenteellisten elementtien kanssa reagoimisen seurauksena), niitä käytetään joskus suojaavaan kalvoon yhdistettyinä. Tällä tavalla bakteriosiinit pystyvät vaikuttamaan paikallisesti ilman, että elintarvikkeen rakenteelliset elementit pystyisivät inaktivoimaan ne. Tämän seurauksena bakteriosiinien ja maitohappobakteerien hyödylliset tai haitalliset vaikutukset ruoissa ovat jollakin tavalla riippuvaisia elintarvikkeen tyypistä, säilytysajasta ja ehkä myös kuluttajan odotuksista. Bakteriosiinit tehoavat pääasiallisesti gram-positiivisia bakteereita vastaan, kun taas gram-negatiivisten bakteereiden herkkyys bakteriosiinin vaikutuksiin riippuu tekijöistä, jotka heikentävät niiden ulkoista kalvoa. Täten yhdistämällä bakteriosiinejä ja erilaisia "hurdle"-menetelmiä, kuten uudenaikaisia pakkaustekniikoita, hyviin hygieenisiin menettelytapoihin, on mahdollista lisätä lihan ja lihanvalmisteiden säilyvyyttä sekä turvallisuutta. Kun otetaan huomioon, että jälkipastörointi voi aiheuttaa Clostridium sp. ja Bacillus sp. lisääntymisen ruokapakkauksissa ja että pilaajabakteerit voivat myös helposti pilata käsitellyt elintarvikkeet, on äärimmäisen tärkeää, että uusia menetelmiä edellä mainittujen ongelmien ratkaisemiseksi löydetään. Lisäksi on huomioitava sekä lakisääteiset että taloudelliset asiat. Geneettisesti muunnellut mikrobit tarjoavat uusia mahdollisuuksia. Geneettisesti muunnelluilla suojakannoilla sekä niiden tuottamilla bakteriosiineillä saattaa olla vielä paremmat mahdollisuudet pidentää elintarvikkeiden säilytysaikoja sekä parantaa niiden turvallisuutta.
  • Laurikkala, Sini (2015)
    The literature review presents general information on fungi and mycotoxins and then deals with aflatoxins, in particular aflatoxin B1 and M1, their occurrence, significance, and current methods for controlling the risk of aflatoxin. Particular emphasis was given to studies on lactic acid bacteria (LAB) in controlling the growth of aflatoxigenic molds and binding of aflatoxins. The aim of the experimental work was to assess the ability of 171 LAB isolates originating from Kenyan naturally fermented traditional milk and maize samples (1) to inhibit the growth of Aspergillus and (2) to bind aflatoxin M1 in vitro. All the LAB isolates (n=171) were screened for their antifungal activity against A. flavus by an overlay method with 100 µl LAB culture on potato dextrose agar (PDA) plate. Out of 171 LAB isolates, mold growth was reduced by 33 isolates, of which 19 isolates were confirmed to retain their activity. These 19 LAB isolates were tested against A. flavus with three different amounts of LAB culture (50 µl, 100 µl and 200 µl). Three LAB isolates performed best against A. flavus by inhibiting the growth with all the tested amounts of LAB culture. The three LAB isolates were identified as Lactobacillus plantarum first by 16S rDNA sequence analysis and later confirmed by recA derived primers and multiplex PCR assay. The ability of 171 LAB isolates to bind AFM1 from phosphate-buffered saline (PBS) in vitro was carried out. LAB isolates were incubated with an amount equivalent to 50 ng AFM1 /ml for 4 h and then centrifuged (10 000 rpm, 10 °C) for 15 min to obtain supernatant containing unbound AFM1. The amount of unbound aflatoxin was analysed by HPLC chromatography from 51 samples. Binding ability of the analyzed isolates varied from 15,4 % to 51,5 %, and six LAB isolates were shown to bind more than 42,4 % of AFM1. The results showed that all tested indigenous LAB isolated from fermented milk and maize products manufactured in Kenya had variable ability to control the growth of A. flavus and bind AFM1 in vitro. It is suggested that such LAB strains could be used for reduction of the risk of aflatoxin contamination in food and feed chains.