Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "gut microbiota"

Sort by: Order: Results:

  • Wiik-Miettinen, Fanny (2018)
    Human gut microbiota is an important topic for many different disciplines. Various factors, e.g. antimicrobial drugs and diet, affect the development and balance of gut microbiota and its interactions with the host. Plant based carbohydrates that transit unabsorbed and undigested through the upper parts of gastrointestinal tract are an important source of energy for the colon bacteria. Some of colon bacteria produce short chained fatty acids (e.g. acetate, propionate, butyrate) from these carbohydrates. SCFAs provide a source of energy and regulate the cell growth and metabolism. The changes in the diversity and abundance of the SCFA producing bacteria have been linked to many gut related diseases. Studying gut microbiota with today’s analytical methods is still challenging. In this work the effects of dietary fibers on gut microbiota were monitored with a static, single vessel batch model. A batch model is typically developed for the quick high-throughput screening of samples. Fiber samples were processed in various ways to increase their solubility and thus fermentability. In this work butyrate producing bacteria, Akkermansia muciniphila and bifidobacteria were targeted. Enumeration was performed with selective growth media and quantitative PCR. Bacterial population was characterized by 16S rRNA based sequencing. To quantitate only viable bacterial cells from the sample matrix by qPCR, samples were treated with propidium monoazide (PMA), which after light activation inhibits the amplification of double-stranded DNA from dead and lysed cells. Since acidic SCFAs accumulate in the sample suspension, pH decreases clearly during the incubation in the static model. This leads to conditions which do not resemble the ones in the colon. Two different buffer solutions, pH adjustment and shorter incubation time were tested to overcome this challenge. The numbers of A. muciniphila and some of the butyrate producers decreased in acidic environment and the proportion of acid-tolerant bacteria was clearly increased and dominated the bacterial population. The optimization of PMA treatment for fecal suspension samples proved to be challenging due to the highly variable composition of sample matrixes. Dietary fibers were observed to cause different changes in bacterial population: the most soluble fibers caused greater decrease of pH and thus greater proportion of acid tolerant bacteria in the population.
  • Viitaharju, Janika (2020)
    OBJECTIVES. The association between prenatal maternal stress and adverse health and developmental offspring outcomes has been long known but explanations for this association remain insufficient. One of the most recent suggestions is gut microbiota. Only a few studies with many limitations have concentrated on the association between prenatal stress and offspring gut microbiota. The aim of this study is to conduct a large scale study with follow-up covering the whole infancy, and to test whether the association differs between girls and boys. METHODS. This study’s sample consists of 825 mothers and their infants from HELMi cohort. Prenatal maternal stress is measured with self-report questionnaire, and infant gut microbiota from fecal samples. 16S rRNA sequencing is used in analyzing the microbiota. RESULTS. High stress group had lower alpha-diversity than low stress group at 3 weeks. No differences were found in richness and beta-diversity. Several phylum, family, and genus level bacteria were associated with prenatal stress. Regarding sex differences, no differences were found in richness or in alpha- or beta-diversity. However, in phylum, family, and genus level bacterial relative abundances, more associations were found in boys than in girls. CONCLUSION. Overall the findings in this study were contradicting compared to previous findings. There was indication that there is no clear association between prenatal stress and infant overall microbiota composition. Also, the association regarding bacterial abundances could decline over age, and the association might be stronger in boys. However, not very consistent conclusions can be made based on research conducted so far.