Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "petrology"

Sort by: Order: Results:

  • Karvinen, Seppo (2019)
    The Central Finland Granitoid Complex (CFGC) is a large (44,000 km2) plutonic core of a Svecofennian (Paleoproterozoic, 1.91–1.82 Ga) arc complex, formed from collisions of several volcanic arcs and their accretion over the Karelian craton. The CFGC consists mostly of granitic to granodioritic rock types. Mafic-ultramafic plutonic rock types are not common, and they consist of mostly small gabbro-diorite intrusions, which may have ultramafic parts. There are two distinct belts around the CFGC, where Ni-Cu potential mafic-ultramafic intrusions are situated – Vammala and Kotalahti. The intrusions within these belts were formed during the height of magmatism within the CFGC (1.89–1.87 Ga). They host Ni-Cu mineralizations, some of which have been economically exploited. The mineralizations are hosted by olivine-rich ultramafic cumulates. The intrusions formed from hydrous tholeiitic basalts (10–12 wt-% MgO) with arc-type trace element chemistry. The difference between Vammala and Kotalahti type intrusions (clinopyroxene and orthopyroxene-dominated, respectively) are attributed to the rock type of the assimilated country rock. In this thesis, three previously unknown or poorly studied mafic-ultramafic intrusions (Matokulma, Palojärvi, and Hongonniittu) within the CFGC are studied in detail. The petrology, similarity to Vammala-Kotalahti type intrusions, parental magma compositions, ore potential, and petrogenesis of the intrusions are described. Rock samples and field observations were gathered during the summer of 2017. Whole-rock geochemistry, mineral geochemistry, isotope geochemistry, and geophysics are used to describe the petrology of the intrusions. Matokulma and Palojärvi intrusions are studied in detail, compared to Hongonniittu intrusion, which was not studied as intricately. The Matokulma intrusion is the least evolved (whole-rock median Mg#=72) of the studied intrusions and consists of tholeiitic melagabbros where clinopyroxene±orthopyroxene and plagioclase are the main cumulus phases within interstitial, magmatic amphibole (magnesiohastingsite to pargasite in composition). Orthopyroxene and plagioclase are intercumulus phases in some samples. There are also mafic dikes that intrude the tonalitic country rock that surrounds the gabbro. The dikes are similar to the gabbros in geochemistry although they are generally more evolved. Trace element geochemistry suggests that the gabbros and dikes are genetically connected, and the dikes possibly represent the residual magmas of the gabbros. The Palojärvi intrusion is noticeably more evolved than the Matokulma intrusion (median Mg#=49), which is apparent in the iron and titanium rich mineral and whole-rock geochemistry. The strongly tholeiitic melagabbros are composed of both orthopyroxene and clinopyroxene as cumulus phases with plagioclase and common Fe-Ti oxide, often within interstitial magmatic amphibole (magnesio-hastingsite to magnesioferri-hornblende in composition). The Fe-Ti oxides are mostly ilmenomagnetite but both magnetite and ilmenite grains are present in same samples. Based on a few mineral analyzes, the ilmenomagnetite contains up to 1.4 wt-% V2O3. U-Pb age determination samples from a leucogabbro dike within the intrusion and granite that crosscuts the intrusion yielded weighted average 206Pb/207Pb ages of 1883.4±4.8 Ma and 1893.8±7.1 Ma, respectively. The age results are in contrast to the intrusive relationship observed in the field. However, considering the margin of error of the results, the granite can be younger than the gabbro, 1887 Ma and 1888 Ma, respectively. The age of ca. 1.89 Ga is at the early stage of the most voluminous mafic-ultramafic magmatism in the Svecofennian terrane. The parental magmas of the Matokulma and Palojärvi intrusions were evolved and contained approximately 5 wt-% and 2 wt-% MgO, respectively. The presence of magmatic amphiboles in most samples indicate that the parental magmas were hydrous. Samples from all intrusions plot similarly in primitive mantle normalized Rare Earth Element (REE) and Normal-Mid-Ocean Ridge Basalt (NMORB) normalized spider diagrams. Similar patterns indicate a similar source for the parental magmas. The trace element geochemistry has signatures of subduction related fluid metasomatism. The rocks are enriched in large ion lithophile elements (LILE) and depleted in High Field Strength Elements (HFSE). These geochemical characteristics indicate that the studied intrusions crystallized from a hydrous, NMORB-like evolved basaltic magma, which has experienced fluid metasomatism. The studied intrusions differ from olivine-rich ultramafic cumulates of Vammala and Kotalahti type intrusions based on their more evolved, gabbroic composition and because of this, they are not Ni-Cu ore potential. Palojärvi may host a Fe-Ti-V mineralization, if there are magnetite rich layers within the intrusion.
  • Rantanen, Hanna (2021)
    The Paleoproterozoic (1.87 Ga, ɛNd -3.7) Suvasvesi granitoid intrusion in southeastern Finland is considered to be a part of the Heinävesi intrusive suite. Inner parts of the lithologically zoned Suvasvesi intrusion are variably alkali feldspar porphyritic biotite granitoid rock and the margins are composed of a more biotite-rich equigranular granitoid rock variety. The Paleoproterozoic metasedimentary rocks of the Viinijärvi suite adjacent to the Suvasvesi intrusion are intruded by leucocratic pegmatite dikes. Potential sources and possible contamination of the granitoid melt are considered with the help of structural and textural observations, petrography, whole-rock geochemistry, mineral chemistry, and petrophysical data. The data were acquired from 34 rock samples collected during a bedrock mapping campaign and combined with the pre-existing mapping, petrographic, and geochemical data from the Suvasvesi and surrounding areas. The Suvasvesi granitoid intrusion is compared to other members of the Heinävesi suite to verify the hypothesis of their petrogenetic connection. The compositions of both Suvasvesi intrusion and Heinävesi suite are also compared to the potential proximal sources, the adjacent Paleoproterozoic metasedimentary rocks and Archean units in the area. In addition, the compositions of the Suvasvesi intrusion and Heinävesi suite rocks are compared to other granitoids from Eastern and Northern Finland with suggested Archean sources, and to regional granitoids of same age. Based on the similarity of major and trace element compositions, it is suggested that the Suvasvesi granitoid is part of the Heinävesi suite. The granites and granodiorites of the Suvasvesi granitoid and the Heinävesi suite are ferroan, calc-alkalic, and peraluminous with average ASI value of 1.08 (n = 73). Although the Heinävesi suite is postkinematic, it shows very few similarities to other rocks of same age. The εNd values of the Heinävesi suite and the paragneiss enclaves within the Suvasvesi intrusion indicate metasedimentary source component or assimilation. Conversely, the I-type mineralogy and geochemistry suggest igneous/meta-igneous source component for the Heinävesi suite. Potential infracrustal sources for the granitoid magma are the Archean TTGs and amphibolites. The conclusion for the magma source is ambiguous. For further studying additional isotope analyses and thermodynamic modelling of the Suvasvesi and Heinävesi magmas are suggested.