Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "photochemistry"

Sort by: Order: Results:

  • Säde, Solja (2021)
    Photocatalytic reactions utilize energy harnessed from light for the activation of a catalyst. In photoredox catalysis, an excited photocatalyst can take part in redox reactions with a substrate. The most common photocatalysts could be divided into three classes: metal catalysts, organic dyes, and heterogeneous semiconductors. These catalysts are often employed with a transition metal dual catalyst. The dual catalyst enables the cross-coupling of substrates, and the photocatalyst oxidizes or reduces the dual catalyst. Photocatalytic reactions can offer a milder alternative for the traditional C-N coupling reactions. In the literature review section, the photocatalytic N-arylation of pyrrolidines was examined. The review found that pyrrolidines were successfully N-arylated with all of the catalyst types, and multiple variations on the substituents on the aryl halide. In the majority of the research, electron withdrawing groups (EWG) as substituents enhanced product yields, but electron donating groups (EDG) decreased yields. In an organic dye catalysed reaction, the effects of the substituents were opposite. In addition, the photocatalytic reactions were compared with traditional C-N coupling reactions, such as the Buchwald-Hartwig reaction, Ullmann-type reactions nucleophilic aromatic substitution and the Chan-Lam reaction. These reactions often had harsh reaction conditions. The photocatalytic N-arylation of 3-substituted pyrrolidines was examined in the experimental part of this thesis. The objectives of this study were to investigate the use of photoredox methodologies for the C-N coupling of 3-substituted pyrrolidines to arenes and examine the scope and limitations of the reaction and the effects of substituents. In addition, the aim was to optimize the reaction conditions for multiple parameters and for each product separately, apply the reaction on a flow chemistry appliance, and execute scale-up reactions on both photoreactors. The study found 3-substituted pyrrolidines to be successfully coupled with aryl halides with great variation in the substituents of both starting materials. With optimization, the reactions with lower product yields were able to be improved significantly. The reaction was successfully upscaled, but the adaptation on the flow reactor requires further optimization. Photocatalytic C-N coupling reactions offer a promising alternative for traditional reactions.
  • Banks, Aidan (2022)
    The opening segments give a summary of the history of catalysis in general and of frustrated Lewis pairs in particular, where both intra- and intermolecular types are discussed. In addition, the essences of the mechanisms of action of frustrated Lewis pairs are discussed, covering electric field, electron transfer and radical-type mechanisms. There is also a discussion on the activity of frustrated Lewis pairs towards dehydrogenation reactions, in which lies the main scope of this thesis. The background and intended parameters of the experimental aspects of this work are initially defined in the thesis scope, along with the practical considerations concerning the reagents, equipment, and special conditions for synthetic procedures also detailed here. The intention was to attempt to elucidate the extent of the impact of different factors, in this case solvent, Lewis acidity, Lewis basicity, and irradiation by blue LED, on dehydrogenation of various N-substituted pyrrolidine substrates. The subsequent section describes the synthetic procedures used for attempted syntheses of the amino-borane ligands. Not all syntheses of the desired ligands were successful, but there was enough success and enough pre-generated material to proceed to the next stage. Due to use of blue LED causing various potential radical side reactions, it was thought appropriate to describe the behaviour of both the sample and substrate blanks under irradiation, as well as the intended reactions during the screening process. Screening provided preliminary data on reaction determining factors, such as solvent, Lewis acidity of the catalyst, and substrate structure. Despite the relative difficulty and time-consuming nature of the catalyst syntheses, some interesting new modes of reactivity appear to be accessible, which may be worth investigating more in the future.
  • Husiev, Yurii (2019)
    The aim of the research was to explore the new possibilities of indoles activation via photoredox catalysis. The interest in general was focused on synthesis of related biaryls through C(sp2)-C(sp2) radical mediated cross-coupling reactions. Conducted literature overview revealed that photochemical methods are undergoing rapid development, being highly promising tools in a way to our goals. As a result, it was discovered that 3-bromoindoles may interact with acridinium and iridium based photocatalysts, producing free radicals that can be coupled with aryl of interest. The further method development helped to optimize the reaction condition to achieve good to excellent biaryls yield. In addition, new ground-up synthetic routes toward several indoles, their derivatives and one of Fukuzumi catalyst were disclosed and supplemented by spectral data. The obtained results might also be useful for developing more complicated dual catalysis systems.