Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "puuluokan ennustus"

Sort by: Order: Results:

  • Joensuu, Marianna (2014)
    In forest inventories, more and more detailed information about the constantly growing stock is intended to obtain both at national and at private forests level. At present, in forest planning the features describing wood quality are rarely estimated from standing trees since there are limited resources for the precise measurements of the trees due to high expenses. The principal aim of this study was to determine the precision whereby the externally reviewed predictive features of the internal quality of a log-size pine wood can be estimated manually using Terrestrial Laser Scanning (TLS). The examined features were tree height, diameter at breast height, upper diameter as well as the heights of the lowest dead and living branch. The second main objective was to determine the precision whereby the tree class can be predicted based on measured and derived tree attributes. The derived attributes were the volume of the wood, crown ratio, the relation of dead branched and branch free part of the tree to the tree height, and form factor. For forecasting the nearest neighbor method was used where the search for the nearest neighbors was performed using the Random Forest -method. The relative accuracy (RMSE %) of TLS data in relation to the reference field data was found to be 7.54% (bias -6.16%) for the tree height, 6.39% ( -2.46%) for the breast height diameter, 10.01% (0.40%) for the upper diameter, 9.21% ( -5.99%) for the height of the lowest living branch and 34.95% ( -1.47%) for the height of the lowest dead branch. On the prediction of the tree class indicating the stem quality, the TLS data reached 78 % classification accuracy (5 tree classes). With harsher three tree class categorization 87% classification accuracy was reached. Based on the results can be said that quality factors, such as the lowest branches can be measured from the TLS data with reasonably adequate accuracy. Also the prediction of the tree class turns out decently (5 classes) and with harsher categorization (3 classes) well. The forecasting method described in this study can still be improved for example by the automatic interpretation of the laser scanning data, as well as combining several laser scanning points from the examined target. The most potential near future application is that TLS data can work as reference for airborne laser scanning because for this purpose the harsher categorization accuracy seems to be already very promising.