Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "pyörrekovarianssi"

Sort by: Order: Results:

  • Soininen, Jesse (2023)
    In order to reliably quantify the impact of cities to the climate change, carbon dioxide (CO2) fluxes from urban areas need to be accurately estimated. Currently, eddy covariance (EC) measurements of net ecosystem exchange (NEE) are among the most used methods for CO2 balance assessment at ecosystem scale. They cannot, however, directly separate gross primary production (GPP) from different sources of CO2 , but instead different tracers and methods need to be used for the separation. In this thesis, urban carbonyl sulfide (COS) fluxes are reported and used as a tracer for biogenic CO2 uptake. For estimating GPP, a leaf-relative uptake (LRU) of CO2 and COS during photo- synthesis has to be calculated. Three different methods for ecosystem scale LRU estimations are compared in order to find which performs the best at assessing urban GPP from EC measurements. LRUNEE method is based on averaging LRU obtained directly from an equation using EC measurements of CO2 and COS. LRUP AR uses parameterisation of photosynthetically available radiation (PAR) to estimate LRU, and LRUCAP uses additional environmental parameters and information of soil water content (SWC), water vapour pressure deficit (VPD) and PAR. EC measurements were conducted at SMEAR III station (ICOS ecosystem associate site) in Helsinki during summer 2022 using a quantum cascade laser gas analyser. Mole fractions of COS, CO2, CO, and water vapour were collected with 10 Hz frequency, together with three-dimensional wind speed measurements. 30-min fluxes were calculated and used for estimating LRU and GPP with the three methods above. Source area of the station was divided into urban, street, and vegetation sectors. To compare different LRU methods, EC measured GPP from vegetation sector was used because it had the smallest anthropogenic emissions. CO and COS fluxes were compared to estimate co-emissions from fuel combustion. Median COS flux of −25.5 pmol m−2 s−1 was measured, indicating a biogenic CO2 uptake in the study area. For simplicity, soil related COS fluxes were neglected. LRUPAR performed the best at estimating GPP, giving an average CO2 uptake of 13.9 μmol m−2 s−1 for the vegetation sector. Furthermore, peak median anthropogenic emissions of 9.1 μmol m−2 s−1 were deduced with LRUPAR, which agrees with earlier research. However, due to problems with instrumentation the data collection period was so short that distinction between LRUPAR and LRUCAP was not unambiguous. Clear is that setting a constant value for LRU leads to significant underestimation of GPP, and a misunderstanding of its behaviour in heterogeneous urban landscape. Further development of COS based GPP estimation should include a more careful instrumentation and revision of the parameterisation of LRUCAP method.