Browsing by Subject "transmon"
Now showing items 12 of 2

(2017)In a quantum computer, the information carriers, which are bits in ordinary computers, are implemented as devices that exhibit coherent superpositions of physical states and entanglement. Such components, known as quantum bits or qubits, can be realized with various different types of twostate quantum systems. Quantum computers will be built for computational speed, with hoped for applications especially in cryptography and in other tasks where classical computers remain inefficient. Circuit quantum electrodynamics (cQED) is a quantumcomputer architecture which employs superconducting electronic components and microwave photon fields as building blocks. Compared to cavity quantum electrodynamics (CQED), where atoms are trapped in physical cavities, cQED is more attractive in that its qubits are tunable and conveniently integrable with the electronics already in use. This architecture has shown some of the most promising qubit designs, despite their coherence times reaching tens of microseconds, are still below the state of the art with spin qubits, which reach milliseconds. Coherence times are historically the most relevant parameters describing the fitness of a qubit, although these days not necessarily the limiting factor. This thesis presents a comprehensive set of theoretical and experimental methods for measuring the characteristic parameters of superconducting qubits. We especially study transmissionlineshunted plasma oscillation qubits, or transmons, and presents experimental results for a single sample. Transmon capacitively couples a superconducting quantum interference device (SQUID) with a coplanar waveguide (CPW) resonator, often with added frequency tunability utilizing an external magnet. The number of superconducting charge carriers tunnelled through a junction in the SQUID are used as qubit degrees of freedom. Readout of the qubit state is carried out by measuring transmission through the CPW. A cryogenic setup is employed with measurement and driving pulses delivered from microwave sources. Steadystate spectroscopy is employed to determine the resonance frequencies of the qubit and the resonator, qubitresonator coupling constants, and the energy parameters of the qubit. Pulsemodulated measurements are employed to determine the coherence times of the qubit. The related analysis and simulation programs and scripts are collected togithub.com/patomaki.

(2022)One of the main ways of physically realizing quantum bits for the purposes of quantum technology is to manufacture them as superconducting circuits. These qubits are artiﬁcially built twolevel systems that act as carriers of quantum information. They come in a variety of types but one of the most common in use is the transmon qubit. The transmon is a more stable, improved version of the earlier types of superconducting qubits with longer coherence times. The qubit cannot function properly on its own, as it needs other circuit elements around it for control and readout of its state. Thus the qubit is only a small part of a larger superconducting circuit interacting with the qubit. Understanding this interaction, where it comes from and how it can be modiﬁed to our liking, allows researchers to design better quantum circuits and to improve the existing ones. Understanding how the noise, travelling through the qubit drive lines to the chip, affects the time evolution of the qubit is especially important. Reducing the amount of noise leads to longer coherence times but it is also possible to engineer the noise to our advantage to uncover novel ways of quantum control. In this thesis the effects of a variable temperature noise source on the qubit drive line is studied. A theoretical model describing the time evolution of the quantum state is built. The model starts from the basic elements of the quantum circuit and leads to a master equation describing the qubit dynamics. This allows us to understand how the different choices made in the manufacturing process of the quantum circuit affect the time evolution. As a proof of concept, the model is solved numerically using QuTiP in the speciﬁc case of a ﬁxedfrequency, dispersive transmon qubit. The solution shows a decohering qubit with no dissipation. The model is also solved in a temperature range 0K < T ≤ 1K to show how the decoherence times behave with respect to the temperature of the noise source.
Now showing items 12 of 2