Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Koljonen, Petri"

Sort by: Order: Results:

  • Koljonen, Petri (2012)
    Parkinson's disease is characterized primarily as a bradykinetic disorder with severe nigral cell loss. In addition to motor symptoms, up to 85 % of patients with Parkinson's disease experience pain and in about 60 % of cases pain is related to Parkinson's disease. Most of it is classified as musculoskeletal pain. Bradykinesia and muscle cramps lead to pain by causing malpositions of joints and trunk. Up to 40 % of parkinson patients experience pain caused by dystonia. Neuritic or radicular pain is also related to Parkinson's disease. Less than 10 % of patients have primary central pain. Pain threshold and nociceptive flexon reflex threshold are lower among patients with Parkinson's disease than in healthy subjects. Common comorbidities, namely restless legs syndrome and depression can also exacerbate pain. The pathology of pain in patients is not well understood. It is known that basal ganglia take part in pain perception and modulation. Lesions in basal ganglia can interfere pain perception and cause the exacerbation of pain. The modulation of pain in central nervous system is altered and descending inhibitory tracts are thought to work insufficiently. Levodopa alleviates the pain in about 60 % of patients with Parkinson's disease suffering from pain. Levodopa normalizes dopamine function at least partly in basal ganglia and that way alleviates the pain caused by dysfunction of dopamine tracts. Levodopa relieves motor symptoms and so alleviates the secondary pain caused by muscle cramps and stiffness. Levodopa raises the pain thresholds of patients to normal level. Levodopa may have also a direct analgesic effect via dopamine D2 receptor activation. The mutations of the gene that codes catechol-O-methyltransferase (COMT) change its activity and are related to pain perception. Low COMT activity is related to several functional differences including increased sensitivity to pain and increased response to opioids. Also COMT inhibitors sensitize mice and rats to pain. The mechanism underlying the sensitization is not well understood. We examined the effects of COMT gene disruption and COMT inhibition in acute pain models. In the first part of our study, we examined the effect of COMT inhibitor OR-486 in COMT deficient mice. We tried to clarify wether sensitization to pain is caused by COMT inhibition or some other mechanism. We also tested the effects of endogenous opioids (swim stress) and exogenous opioid (morphine) in COMT deficient mice. In the second part, we tested the effects of an atypical COMT inhibitor CGP 28014 in acute pain models. CGP 28014 does not inhibit COMT in vitro but it inhibits the Omethylation of catecholamines in vivo. The main finding of our study was the sensitization to pain caused by CGP 28014. The result gives support to hypothesis claiming that sensitization to pain is caused by O-methylation of catecholamines. The results of our study are also in line with the theory that low COMT activity is related to pain sensitization and increased response to opioids.