Browsing by Subject "4,5-dihydro-oksatsoli"
Now showing items 1-1 of 1
-
(2013)Voltage-gated sodium channels play an essential role in the function of the nervous system as they are responsible for producing action potentials. Abnormal activity of sodium channels is in connection to several diseases such as epilepsy and chronic pain. Voltage-gated sodium channel blockers which are selective towards a specific isoform could provide more efficient and better tolerated drugs to treat these diseases when compared to the drugs used today. Clathrodin is an alkaloid isolated from Caribbean sea sponge Agelas clathrodes. Bioactivity studies have shown that clathrodin changes the function of voltage-gated sodium channels. The aim of this study was to synthesize two kinds of structure analogs of clathrodin and study their structure-activity relationship towards different isoforms of voltage-gated sodium channels. The study is part of the MAREX project (Exploring Marine Resources for Bioactive Compounds: From Discovery to Sustainable Production and Industrial Applications) funded by the European Union. Intention of the project is to find new bioactive compounds in marine organisms. A four-step route was developed for synthesizing 2-aminobenzothiazole analogs. A three-step route was developed as well but the last step seemed to be problematic for some of the compounds. The three-step route provided new compounds as intermediates and some of them were sent to tests for activity. Synthesis of 1H-pyrrole-2-carboxamide analogs of clathrodin failed. 4,5-dihydrooxazole was recognized as a problem as it was formed as a result of a cyclization reaction when bromination was tried on the intermediate. The formed structure was used in synthesizing 2-(1H-pyrrol-2-yl)-4,5-dihydrooxazole analogs of clathrodin. These reactions failed to give any final products which could have been tested for activity. Eight synthesized compounds were sent to tests for activity. Results were received from two of them and they showed no activity towards the voltage-gated sodium channels in 10 µM concentrations. Discussion about structure-activity relationship is not possible based on two compounds only.
Now showing items 1-1 of 1