Browsing by Subject "Tourette’s syndrome"
Now showing items 1-1 of 1
-
(2018)Histamine acts as a neurotransmitter in the central and peripheral nervous system and it has a role in various body functions. Histamine neurons spread widely to most of the central nervous system where histamine has an important role in sleep-wake cycles, regulation of appetite, and motor functions. The effects of histamine are mediated mostly by H1-, H2- and H3-receptors in the central nervous system. The synthesis of histamine and the release of histamine from the presynaptic nerve endings are regulated by H3-receptor via negative feedback. H3-receptors are located also on the presynaptic cell membranes of other neurons where they regulate the release of other neurotransmitters. Several animal experiments have shown that H3-receptor-mediated mechanisms have been observed to have an important role in the regulation of the motor functions together with other neurotransmitter systems especially in the basal ganglia area. The histaminergic system is involved in the patophysiology of diseases such as Parkinson’s disease, Tourette’s syndrome and Huntington’s disease where motor performance is impaired. Functional, physiological and genetical changes in the histaminergic system have been observed in patients with these diseases. There are no clinically used histaminergic compounds for the treatment of these diseases, though recently in animal experiments the histaminergic compounds have proved to be promising. The aim of this Master’s thesis study was to examine the effects of histamine deficiency in the brain on the levodopainduced dyskinesias in histidine decarboxylase knock-out mice (HDC KO) (n=9) and wild-type mice (n=12) in a 6-OHDA mouse model of Parkinson’s disease. The mice were injected with a neurotoxic 6-OHDA solution (3 μg) into the right medial forebrain bundle to cause a unilateral dopaminergic lesion. The success of degeneration of dopaminergic neurons were measured by a rotating rod test and amphetamine-induced (2.5 mg/kg) and apomorphineinduced (0.5 mg/kg) rotameter tests. A daily treatment of levodopa and benserazide (4.5 mg/kg, 1.125 mg/kg) was initiated after the behavioural studies for 10 days. On the last day of the treatment the dyskinesias of the mice were filmed for one minute after 20, 40, 60, 80, 100 and 120 minutes after levodopa dose. After the filming, the mice were killed by decapitation and their middle brains were collected for immunohistochemical studies to measure the extent of the dopaminergic lesion. No statistically significant difference was observed between genotypes in levodopa-induced dyskinesias. In previous studies of our study group more severe levodopa-induced dyskinesias were observed in HDC KO mice when the dopaminergic lesion was caused in the striatum in the 6-OHDA mouse model. The degenerated brain area and thereby the extent of the lesion may have importance in observing the difference between levodopa-induced dyskinesias. In this Master’s thesis study the dopaminergic lesions were equally successful with both genotypes. Therefore differently successful lesions between the genotypes can not be the reason why the difference in genotypes in levodopa-induced dyskinesias was not observed. HDC KO mice were observed to have significantly increased ipsilateral rotational behaviour induced by amphetamine in amphetamine-induced rotametry. Previous studies have shown that HDC KO mice have increased dopamine release and high dopamine metabolite levels which might explain the increased rotational behaviour induced by amphetamine in this study. The observations of earlier studies and this Master’s thesis study verify the relation between histaminergic and dopaminergic systems in motor functions.
Now showing items 1-1 of 1