Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "cannabidiol"

Sort by: Order: Results:

  • Heiskanen, Vilma (2021)
    Binge eating disorder (BED) is the most common eating disorder characterized by compulsive recurrent binge eating episodes with the sense of a lack of control. During a binge eating episode, one eats a larger amount of food, typically high in fat and/or sugar, than would normally be eaten in a discrete period of time. After the episode, negative emotions, such as shame and self-disgust, are present. However, BED does not include compensatory behavior, such as vomiting or excessive exercise. Due to compulsive and uncontrollable eating behavior, it has been suggested that BED represents a food addiction. Eating energy-dense food activates the dopamine, opioid, and endocannabinoid systems in the brain. This elicits the activation of the reward process. Some drugs and medications affect the same neurotransmitter systems, which may produce neuronal alterations in the reward process, leading to an addiction. Several studies have found that cannabidiol (CBD) reduces the self- administration of cocaine, morphine, alcohol, and sucrose in rodents, suggesting an effect on the reward-response. Some of these effects have been shown to be mediated by cannabinoid receptor 2 and TRPV1 receptor. However, the effects of CBD on bingeing behavior have not been studied up to date. The aim of the study was to investigate the effect of CBD on homeostatic feeding and binge eating behavior in C57BL/6 mice. Five separate experiments were conducted. The first experiment investigated the effect of CBD (15, 50, and 150 mg/kg, i.p.) on locomotor activity in a modified open field test over a 2-hour period. In the second test, the effect of CBD (15, 50, and 150 mg/kg, i.p.) on homeostatic feeding was monitored in non-bingeing mice. Next, a limited intermittent access binge eating model without food deprivation or stressors was inducted. Mice had access to laboratory chow ad libitum, but a high energy diet (high in fat, HED) was presented in 24-hour periods every 5-8 days. Then the effect of CBD (15, 50, and 150 mg/kg, i.p.) on HED and chow intake in bingeing mice was investigated. In the fourth experiment, seven days following the administration, the after effect of CBD was studied by monitoring food intake without CBD treatment. Finally, it was investigated whether the effect of CBD can be inhibited by TRPV1 receptor antagonist AMG9810 (1 mg/kg, i.p). In each test, the food intake was monitored at the time point 0,5, 2,5, and 24 h after CBD treatment. Also, water consumption was measured in each experiment. The results revealed that CBD does not affect locomotor activity or homeostatic feeding at a dose of 15, 50, or 150 mg/kg (i.p). However, the results showed that CBD reduces the intake of HED in a dose-dependent manner (15, 50, or 150 mg/kg; i.p.) and, possibly, increases chow intake. No after effect was observed seven days following the administration. Most likely, TRPV1 does not mediate the effect of CBD on HED intake. Furthermore, no significant effects on water intake were observed. In this study, the core aims were to evaluate whether CBD affects homeostatic feeding or binge eating behavior in mice. The results provided a novel insight into the effects of CBD. The findings indicate that the acute systemic administration of CBD reduces HED intake, and possibly, simultaneously increases chow intake, suggesting a balancing effect on feeding in bingeing mice. However, the role of TRPV1 in this effect remains unclear, and further studies are needed.