Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "compressibility"

Sort by: Order: Results:

  • Böhling, Linda (2021)
    Tablet is the most common pharmaceutical dosage form due to ease of administration, chemical and physical stability, and relatively low manufacturing cost. Direct compression is the preferred method for tablet production. Direct compression formulations typically contain a considerable amount of excipients. Therefore, excipients can have a significant effect on the tableting properties of formulations. More research is needed for better comprehension of the compression behaviour of different materials. The objective of this work was to investigate tableting properties of different excipients and their binary mixtures with two different laboratory scale tableting devices; the Gamlen® D1000 Powder Compaction Analyzer and the FlexiTab®. The excipients used were microcrystalline cellulose (MCC), lactose, mannitol, starch, and dicalcium phosphate (DCP). Different compression pressures were used to survey the compression behaviour of the excipients at a wide pressure range. In addition, potential effects of compression speed, dwell time, and lubrication method were considered. The excipients and their binary mixtures were characterised based on compressibility (solid fraction vs. compression pressure) and tabletability (tensile strength vs. compression pressure). The results obtained with the devices were compared to enhance process understanding. Based on the compressibility curves, it appeared that plastic deformation was the main compression mechanism of MCC and starch and fragmentation the main compression mechanism of lactose, mannitol, and DCP. The tabletability of MCC was excellent, and also the tabletability of mannitol was good. The tabletability of DCP was intermediate, whereas lactose and starch had inferior tabletabilities. In general, the tabletabilities and compressibilities of the binary mixtures were more or less what was expected based on the results of the individual materials. The results obtained with the different speed parameters and lubrication methods were mainly in line with the perceptions of the compression mechanisms of different materials. In overall, the results obtained in the Gamlen and FlexiTab experiments were quite similar. However, tensile strengths appeared generally slightly lower in the FlexiTab experiments. Probable explanations are the higher compression speed of the FlexiTab and differences in hardness measurements. This study indicated that the FlexiTab and Gamlen devices have different benefits. The Gamlen device is clearly very suitable for investigating tableting properties during formulation development, but the FlexiTab device has the advantages of higher compression speed and automatic powder feeding mechanism. Tabletability results were slightly better with the Gamlen, but more experiments are needed for solving the reasons (e.g. compression speed and hardness measurements). More information of the compression behaviour of different materials could be obtained by analyzing punch displacement data and by using different compression equations.
  • Viskari, Ansa (2012)
    The purpose of this study was to investigate how the mixing time of the magnesium stearate affects on the compressibility of partially pregelatinized maize starch. Pregelatinized maize starch is used in pharmaceuticals as a filler, binder and as disintegrant. Because pregelatinized maize starch has lubricant characteristics itself, it is known to be sensitive for the amount and the mixing time of magnesium stearate. The aim is that magnesium stearate is not totally homogenously mixed on the powder surfaces so that even, clean powder surfaces exist. Homogeneous mixing means that particles are coated with magnesium stearate, which as a hydrophobic ingredient prevents bond formation between plastically and elastically behaving particles. Too much magnesium stearate and/or too long mixing time may cause weakening of tablet tensile strength, laminating and capping. The weakening of the tensile strength of the tablet increases friability, which causes problems during packaging process and the transportation. Too much magnesium stearate may also lengthen the disintegration time and slow down the dissolution. The aim of this study was to compare four different brands of pregelatinized maize starch. The purpose was to find differences affecting the compressibility behavior. Also the effect of the mixing time of magnesium stearate for compression behavior of masses were studied. The brands investigated were C*PharmGel DC 93000, Lycatab® C, Starch 1500® and SuperStarch 200®. First mentioned was a reference product which is not manufactured any more. There was only one batch of the reference product but three batches from other products to be able to investigate also batch to batch variation. The characteristics studied from pregelatinized starch samples were bulk density, apparent density and true density, flowability, moisture sorption, moisture content, pH value, swelling volume and particle size. Also NIR, FTIR and Raman spectroscopy and X-ray powder diffraction method were used. Weight, tensile strength, dimensions, friability, disintegration time and moisture sorption were studied for tablets. The compressibility of the mass and elastic behavior of tablets was studied. Pictures of the tablets were also taken by scanning electron microscope. When the mixing time of magnesium stearate was increased from 2 minutes to 5 minutes, the compression pressure needed for pressing tablets for 80 N strength increased 200-700 N depending on the brand of pregelatinized maize starch. Based on the results the best alternative to replace C*PharmGel DC 93000 was chosen to be SuperStarch 200®. Scanning electron microscope pictures showed that C*PharmGel DC 93000 deviates from other qualities studied by being roundish and regular in shape. SuperStarch 200® and Starch 1500® reminded remarkably each other. Lycatab® C was the biggest in particle size and very irregular in shape. The differences found in tabletting followed the expectations based on the SEM-pictures. SuperStarch 200® showed to best compressibility in lowest strain strength and after C*PharmGel DC 93000 it was least sensitive for mixing time of the magnesium stearate. It also has least elastic recovery. The differences between SuperStarch 200® and Starch 1500® in compression properties were moderate but clear. Lycatab® C had clearly the weakest compression properties.