Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "disaccharide"

Sort by: Order: Results:

  • Nordberg, Antti (2011)
    Nearly one fourth of new medicinal molecules are biopharmaceutical (protein, antibody or nucleic acid derivative) based. However, the administration of these compounds is not always that straightforward due to the fragile nature of aforementioned domains in GI-tract. In addition, these molecules often exhibit poor bioavailability when administered orally. As a result, parenteral administration is commonly preferred. In addition, shelf-life of these molecules in aqueous environments is poor, unless stored in low temperatures. Another approach is to bring these molecules to anhydrous form via lyophilization resulting in enhanced stability during storage. Proteins cannot most commonly be freeze dried by themselves so some kind of excipients are nearly always necessary. Disaccharides are commonly utilized excipients in freeze-dried formulations since they provide a rigid glassy matrix to maintain the native conformation of the protein domain. They also act as "sink"-agents, which basically mean that they can absorb some moisture from the environment and still help to protect the API itself to retain its activity and therefore offer a way to robust formulation. The aim of the present study was to investigate how four amorphous disaccharides (cellobiose, melibiose, sucrose and trehalose) behave when they are brought to different relative humidity levels. At first, solutions of each disaccharide were prepared, filled into scintillation vials and freeze dried. Initial information on how the moisture induced transformations take place, the lyophilized amorphous disaccharide cakes were placed in vacuum desiccators containing different relative humidity levels for defined period, after which selected analyzing methods were utilized to further examine the occurred transformations. Affinity to crystallization, water sorption of the disaccharides, the effect of moisture on glass transition and crystallization temperature were studied. In addition FT-IR microscopy was utilized to map the moisture distribution on a piece of lyophilized cake. Observations made during the experiments backed up the data mentioned in a previous study: melibiose and trehalose were shown to be superior over sucrose and cellobiose what comes to the ability to withstand elevated humidity and temperature, and to avoid crystallization with pharmaceutically relevant moisture contents. The difference was made evident with every utilized analyzing method. In addition, melibiose showed interesting anomalies during DVS runs, which were absent with other amorphous disaccharides. Particularly fascinating was the observation made with polarized light microscope, which revealed a possible small-scale crystallization that cannot be observed with XRPD. As a result, a suggestion can safely be made that a robust formulation is most likely obtained by utilizing either melibiose or trehalose as a stabilizing agent for biopharmaceutical freeze-dried formulations. On the other hand, more experiments should be conducted to obtain more accurate information on why these disaccharides have better tolerance for elevating humidities than others.
  • Kolu, Anna-Maija (2013)
    Spray drying is one way to dry protein medicines and it has many advantages compared to other drying methods, for example it is a fast process. In spray drying high temperature and mechanical stress can inactivate the protein. Disaccharides are generally used as protective agents of protein in spray drying because they have an ability to protect the structure of the protein during drying and storage. Aim of this research was to study the stability of the protein during spray drying and storage by using β-galactosidace as a model protein. Aim was also to characterize the physical properties of trehalose and melibiose and to study how well they protect the protein. Some of the central matters to be examined were the glass transition temperature, crystallinity, water activity, yield of the spray dried powder and protein activity. Especially studying the properties of melibiose in spray drying was important because it has not been used before. The study also included the optimization of the process parameters to be suitable for the product. Trehalose and melibiose transformed to an amorphous form during spray drying. Both XRPD and DSC showed an amorfous form. Trehalose and melibiose proved to be good protective agents for the protein during spray drying and storatge probably because they remained their amorphous structure. β-galactosidase remained activity very well. Optimizing of the process parameters was successful because protein remained its activity and still the powder was quite dry and yield was good. The changes in the structure of the protein were studied with FT-IR but the amount of the protein was too small. Problems caused by the spray drier may have an effect to the results, but on the other hand the spray dryer was made to work optimally.