Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "drug discovery"

Sort by: Order: Results:

  • Lohtaja, Milka (2016)
    Chlamydia pneumoniae is an intracellular bacterium that causes a variety of respiratory infections to humans such as pneumonia and bronchitis. In addition C. pneumoniae -infection has been associated with multiple chronic diseases of which the most important are atherosclerosis and vascular diseases, asthma, chronic obstructive pulmonary disease and different kinds of neurological disorders. C. pneumoniae is a very common pathogen that has the ability to hide in the system in a persistent chronic form out of reach of the immune defences. C. pneumoniae has been shown to infect many other cell types besides bronchial epithelial cells. These cells include monocytes, macrophages and vascular endothelial cells. C. pneumoniae induces the secretion of different kinds of cytokines and cell signalling molecules and the expression of adhesion molecules in all of these cell types. Too strong cytokine and immune response is detrimental to cells and to whole system. Currently available antibiotics aren't effective enough against C. pneumoniae -infection, especially against its chronic form. Furthermore, the lack of effective anti-chlamydial drugs impairs the research of the association between C. pneumoniae and chronic diseases. The aim of this study was to investigate the effect of anti-chlamydial compounds on the release of cytokines and cell signaling molecule, nitric oxide, induced by C. pneumoniae -infection in different cell types. These anti-chlamydial compounds are currently under the investigation in the faculty of pharmacy. In addition the anti-inflammatory properties of the compounds were further investigated with the help of lipopolysaccharide of another gram-negative bacterium E. coli. The groups of compounds investigated in this study were β2,2-amino acid derivatives, Schisandra chinensis -lignans, TE-compounds synthesized in Vienna and benzimidazole compounds synthesized in the faculty of pharmacy. There were four cell types used in this study, HL- and BEAS-2B-epithelial cells, THP-1-monocytes/macrophages and RAW264.7-macrophages. The study focused on the determination of vascular endothelial growth factor VEGF and interleukins IL-8, IL-10 and IL-12. The concentrations of cytokines in the cell medium were measured after infection using ELISA-method. Nitric oxide measurements were also determined from the medium using Griess' reagent. Immunofluorescence labeling was used to confirm the infection and the infection was verified by fluorescence microscope. In addition some of the compounds were tested for the cell viability using resazurin assay. All the groups of compounds showed desired effects on the release of cytokines and nitric oxide. Especially β2,2-amino acid derivatives reduced clearly the release of both cytokines and nitric oxide. β2,2-amino acid derivatives could thus be potential drug candidates for the development of anti-chlamydial and anti-inflammatory drugs. Schisandra chinensis -lignans inhibited especially the release of nitric oxide in both C. pneumoniae -infected and LPS-stimulated cells which may tell about their broad anti-inflammatory properties. There were also found desired results with TE-compounds and benzimidazole compounds. Interleukins were not secreted by any of the studied cells so that part needs more research and further investigation. Based on the results found in this study it can be concluded that the studied compounds could be potential lead compounds in the discovery of anti-chlamydial drugs and drugs that specifically inhibit C. pneumoniae -infection. Further research is needed concerning the effects of these compounds on cytokines and especially on chronic infection.
  • Pohjavaara, Saana (2021)
    Dilated cardiomyopathy is a non-ischemic cardiac disorder predisposing to heart failure, and the characteristics of dilated cardiomyopathy emerge under normal loading conditions. Dilated cardiomyopathy can be consequence of various conditions e.g. genetic mutations, virus infection or toxin exposures. One of the significant causes of familial dilated cardiomyopathy in Finland is mutation S143P in LMNA-gene, coding for A type lamins. Current drug therapy for dilated cardiomyopathy aims to alleviation of symptoms, prevention of complications and progression of the disease, however, efficacy of current therapy is insufficient, and novel therapy strategies are urgently required. Transcription factors are fundamental regulators of gene expression, and GATA4 is a crucial transcription factor both in embryonic and in adult heart and thus an intriguing target for therapeutic manipulation. Compounds targeting GATA4 have shown anti-hypertrophic and cardioprotective effects. Here, effects of two different hypertrophic stimuli, endothelin-1 and mechanical stretch, on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were examined with high-content analysis and quantitative reverse transcription PCR (qRT-PCR), respectively. One hiPSC-CM line was used as a healthy control, whereas the other carried the S143P mutation in LMNA-gene (DCM-CMs). Additionally, effects of GATA4-targeting compound C-2021 on cardiomyocytes were investigated. In summary, according to proBNP staining, DCM-CMs are more hypertrophied at baseline. DCM-CMs seemed to be less susceptible to mechanical stretch-induced enhancement in BNP gene expression. In addition, compound C 2021 may have anti-hypertrophic properties suggesting it to be a potential drug candidate in cardiac diseases. Finally, lamin A seemed to mislocalize to nucleoplasm instead of nuclear lamina in DCM-CMs.
  • Andersson, Charlotta (2023)
    Heart failure is a global health issue that can result from various factors, one of which is myocardial infarction. The adult human heart has limited regenerative capacity to cover the loss of cardiomyocytes after myocardial infarction with new cardiomyocytes. The main responses to the loss of cardiomyocytes are fibrotic scar formation and the hypertrophy of remaining cardiomyocytes. Prolonged hypertrophy eventually leads to heart failure. Current treatments for heart failure only relieve the symptoms. Inducing cardiac regeneration could be one possible way to prevent and treat heart failure. Thus, to develop medical treatments that enhance the regenerative capacity, a comprehensive understanding of precise cellular mechanisms behind heart regeneration is crucial. The objective of this study was to establish a high-content analysis method for human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) utilizing the Cell Painting assay to identify and categorize morphological alterations induced by various compounds in hiPSC-CMs. To evaluate the morphological impacts, dozens or even hundreds of cell features were measured at the same time. hiPSC-CMs were exposed to two hypertrophy inducers, endothelin-1 and angiotensin II, and to doxorubicin, which is known to be a cardiotoxic compound. In addition, the effects of a GATA4- targeting compound, C-2021, on hiPSC-CMs were examined. C-2021, was expected to have antihypertrophic effect on the cells. Previously used methods, proBNP staining and qPCR, were used to validate the novel method. According to proBNP staining and qPCR, endothelin-1 induced cardiomyocyte hypertrophy greater than angiotensin II. Compound C-2021 did not show statistically significant antihypertrophic properties after hypertrophic stimuli, but some tendency the alleviate the hypertrophy was noticed. Moreover, by utilizing different data processing programs a novel analysis method was developed. With this method, the different treatment groups were clustered based on the morphological alterations caused by compounds exposures. The hiPSC-CMs exposed to endothelin-1, angiotensin II or doxorubicin showed a different morphological profile compared to the control group hiPSC-CMs. Compound C-2021 was also observed to affect cell morphology. However, the data analysis still needs improvements in order to detect which cell features these compounds affect.
  • Tepsell, Juhani (2018)
    During and after myocardial infarction, millions to a billion cells die off. Scar tissue formed by fibroblasts replaces the injured myocardium during recovery. While the newly formed tissue is durable and prevents rupture of the heart, it doesn´t contribute to pump function. Depending on the extent of cardiomyocyte loss, the remaining functional myocardium get strained. Adult mammalian heart has inadequate capacity to regenerate after such injury. In case of sustained substantial increase in workload, the compensatory mechanisms turn into pathological processes including excessive fibrosis and myocyte apoptosis. The progressive decline of hearts contractile function results in heart failure (HF). Current drug treatments for managing HF aim to prevent progression of the disease and relieve symptoms. ACE inhibitors, beta blockers and diuretics are effective along with healthy lifestyle. No practical treatments are available to restore cardiac function yet. Human myocardium normally regenerates, but only 1% or less of myocytes get replaced yearly. Heart’s resident stem/progenitor cells (CPCs) likely play a role in the turnover. The aim of this study was to develop a screening method to identify small molecules that possibly promote differentiation of cardiac progenitor cells to cardiomyocytes. Cell population differentiated from mouse embryonic stem cells (mESCs) was used as a model for CPCs. Directed differentiation protocol of mESCs used here promotes commitment to cells of cardiac mesoderm, part of which will further differentiate to cardiac progenitors. The resulting population at day 6 is heterogenous but many of these cells are progenitors that turn into cardiomyocytes (CMs) by day 8. 10 000 cells per well are plated on 384 well plates at day 5. Test compounds are added at day 6 and removed day 8 for effect in progenitors and day 7-9 for effect in early cardiomyocytes. 0,1% DMSO is used as vehicle and Wnt pathway inhibitor XAV939 as positive control. The effects are quantified with plate reader on day 9. E14 derived mESC reporter line was used. Myl2v-eGFP + SMyHC3-RFP double reporter line allows the specific identification of ventricular CMs with green fluorescence and atrial CMs with red fluorescence. Plate reader measures the total fluorescence of the wells at 485/520nm on day 9, which is used as a readout for ventricular CMs. The fluorescence intensity depends on the amount of GFP+ cells but also on the level of Myl2v expression. Atrial CMs could be quantified similarly but the population doesn´t contain enough RFP+ cells. The assay was shown to reliably point out ‘hits’ that have a strong effect. Any compounds that only produce a moderate effect could be a false negative, however. The effect on cardiac progenitors could likely be increased by simply adding the compounds earlier on day 5. Variability of key reagents causes the main technical troubles through unpredictably affecting cytokine concentrations which decreases the amount of cardiac progenitors. Partially similar screening assays are being used by the big pharma where they cryopreserve progenitors in bulk for later use, thus simplifying and speeding up their method. Same approach could be adopted.
  • Silfvast, Saga (2016)
    Heart failure is a major public health problem and a leading cause of mortality worldwide. The most common cause of heart failure is myocardial infarction. Following a myocardial infarction, a large number of cardiomyocytes die and cardiac muscle is replaced by fibrotic scar tissue. Since the adult heart has inadequate endogenous regenerative capacity, loss of muscle tissue often causes a progressive decrease in cardiac function eventually leading to heart failure. At the moment heart transplantation is the only curative treatment for heart failure, but the low number of donor hearts is limiting the use of this treatment option. As current drugs only slow down the progression of the disease, there is a great need for new regenerative treatments. Direct cardiac reprogramming is a new approach for generating cardiomyocytes for cardiac regeneration. Unlike pluripotent stem cell-based strategies, direct reprogramming enables conversion of a terminally differentiated cell type directly into another cell type without first producing a pluripotent intermediate. Due to their abundancy and role in the repair of myocardial injury, fibroblasts represent an attractive starting cell type for direct cardiac reprogramming. Fibroblasts have been directly reprogrammed to induced cardiomyocytes (iCMs) by overexpression of key cardiac transcription factors, microRNAs (miRNA) or by modulating specific signal transduction pathways with small-molecule compounds. Despite successful reports of direct reprogramming both in vitro and in vivo, the efficiency of direct reprogramming remains, however, too low for potential clinical applications. The aim of this M.Sc. thesis work was to establish direct reprogramming of mouse embryonic fibroblasts (MEFs) to iCMs by viral overexpression of cardiac transcription factors Hand2 (H), Nkx2.5 (N) Gata4 (G), Mef2c (M) and Tbx5 (T) and a small-molecule compound screening platform for identifying small-molecule compounds that could enhance the reprogramming efficiency and potentially replace cardiac transcription factors in direct cardiac reprogramming. In accordance with previous publications MEFs were successfully directly reprogrammed to iCMs using both HGMT and HNGMT cardiac transcription factor combinations. The screening platform was tested using the TGF-β inhibitor SB431542, which has recently been reported to increase the cardiac reprogramming efficiency. In line with previous publications, the reprogramming efficiency was significantly increased by treatment with SB431542. Initial tests with other small-molecule compounds did not have a positive effect on the reprogramming efficiency. The results of this M.Sc. thesis work verify previous publications and demonstrate a method for in vitro small-molecule compound screening, which can be used to identify compounds that increase the reprogramming efficiency in direct cardiac reprogramming. However, the results shown here are only preliminary and more replicates are needed in order to confirm the current results. Nonetheless, the results of this thesis work set a foundation for finding small-molecule compounds that in the future might be used to target direct cardiac reprogramming as a regenerative therapy for myocardial infarction and heart failure.