Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "drug transporters"

Sort by: Order: Results:

  • Stenberg, Emilia (2023)
    Drug transporters and metabolizing enzymes have an important role in drug absorption in the small intestine. Food-drug interactions can affect the function of drug transporters and metabolizing enzymes in the small intestine and hence the bioavailability of drugs may change. Certain beverages have clinically relevant interactions with drugs and drinking of them should be avoided during certain drug treatments. However, possible food-drug interactions need more in vitro and in vivo studies, for example in the case of food additives which are used in the food industry increasingly, to investigate their clinical significance as inhibitors. Overall, investigating food-drug interactions is important as they might be as relevant as drug-drug interactions, especially for drugs that pass the gut wall mainly via transporters or have high presystemic metabolism. In this thesis, the inhibitor potential of 23 food additives was studied toward intestinal transporters and CYP enzymes. The food additives included sweeteners, colorants, and antioxidants. Food additives were tested against four efflux transporters with vesicle transporter assays and in OATP2B1 influx transporter with HEK293 uptake assay. The inhibition of CYP enzymes was tested in human intestinal microsomes. Six food additives were identified as possible inhibitors of BCRP, MRP2, OATP2B1, or P-gp. Two food additives were dual inhibitors. IC50 values were determined in dose-response studies for the potential inhibitors. The IC50 values were compared to the maximum expected concentration in the intestinal lumen to evaluate if the in vivo inhibition of intestinal transporters is possible. Only one food additive had a higher IC50 value than the maximum expected concentration. Eight food additives, specifically six antioxidants and two colorants, inhibited CYP-enzyme metabolism by more than 50%. Based on the results of this thesis, further studies could be performed for the identified inhibitors whose daily consumption is higher than the IC50 value. Certain food additives may inhibit CYP enzymes and the microsome assay used in this thesis is valid and could be used to study the metabolism of intestinal drug-metabolizing enzymes. However, the inhibition of transporters and CYP enzymes could be tested in cell lines, for example Caco-2 cells, to have more realistic intestinal test conditions.