Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "hepatocyte"

Sort by: Order: Results:

  • Porola, Pauliina (2012)
    Hepatotoxicity is an undesired feature of many drugs and is one of the main reasons for attrition during the drug development process. Although an in vitro model can never totally correspond to or replace a whole organism, a reliable in vitro model for liver toxicity screening would help to detect liver toxicity earlier in the development process. Effective and early in vitro screening would reduce the need of animal subjects and clinical trials and thus would be both ethically more acceptable and more cost-effective. Currently mostly used models for liver metabolism and toxicity studies are primary hepatocytes, hepatic cell lines and animal models. However, these models have many drawbacks and are not considered reliable. Human embryonic stem cells (hESCs) are pluripotent cells that can be differentiated into many specialized cell types including hepatocytes. They are also self-renewable and thus represent an unlimited and promising source of hepatocytes to be used as a tool in in vitro liver toxicity testing of drug candidates. The aim of this study was to produce hepatocytes from hESCs via multiple steps following the in vivo pathway of developing hepatocytes: first hESCs were differentiated into definitive endoderm cells, after which they were differentiated into hepatic progenitor cells. Finally, hepatocyte-like cells (HLCs) were induced from the progenitor cells. Our specific interest was the use of hepatic cell derived acellular matrix as a differentiation basis for hepatic progenitors and hepatocytes. We also studied the effect of Matrigel overlay on the hepatic differentiation. Differentiation method without the Matrigel overlay was promising. HLCs showed correct hepatocyte-like morphology and expressed hepatocyte markers such as albumin, α-antitrypsin, CYP3A4 and HNF4α both on mRNA and protein level shown by qPCR and flow cytometry and immunofluorescence staining, respectively. Accordingly, the expression of stem cells marker SSEA-3 showed a tendency to decrease as the differentiation proceeded. HLCs also functionally resembled hepatocytes shown by albumin production. However, we could not detect other hepatocyte functions such as urea production or CYP activity. With Matrigel overlay, the hepatocyte-like morphology of the cells was lost, no albumin production was shown and the expression of several hepatocyte markers was lower than in the experiment done without the Matrigel overlay. Thus, Matrigel overlay was shown to be unbeneficial for hepatocyte differentiation. In conclusion, we showed that differentiation of hESCs on the acellular matrix with specific growth factors and without the Matrigel overlay seems promising as a method to produce HLCs. This preliminary study serves as a basis for future studies, in which the differentiation method should still be further studied and developed to yield functional HLCs of uniform quality.
  • Lindstedt, Hanna (2022)
    Drug-induced liver injury (DILI) is a relatively rare hepatic condition that can be classified as predictable and unpredictable. However, DILI is a primary reason for drug withdrawals, post-marketing warnings, and restrictions of use. DILI is a problem for the drug users but also for the pharmaceutical industry and regulatory bodies. From the perspective of patients' and clinicians', DILI is the major cause of acute liver injury. At present, a major problem predicting DILI in drug discovery is a poor understanding of its mechanisms as well as the complexity of DILI pathogenicity. The main mechanism behind DILI are alterations in bile acid homeostasis, oxidative stress, and mitochondrial dysfunction. More than 50 % of drugs causing DILI are causing mitochondrial impairment. If the normal function of mitochondria is disturbed, the energy production of the cell decreases, and cell function decline leading eventually to the cell death. In this study prediction of mitochondrial toxicity was studied using cryopreserved primary hepatocytes of humans and rats. The aim of the study was to clarify if there are interspecies differences in the prediction of toxicity but also investigate possible differences in the mechanisms behind hepatotoxicity by using three well-known compounds toxic to mitochondria. To determine these differences, total cellular ATP was measured after 2- and 24- hour exposure time to gain information on overall viability and possible adaptive responses. Mitochondrial energy pathways were studied as a real-time monitoring acute exposure of test compounds. Morphology, location, and possible adaptive response of mitochondria were studied using a fluorescent probe and antibody staining combined with high content imaging (HCI). Overall, primary rat hepatocytes were more sensitive to the test compounds than human hepatocytes. Also, there were differences between human hepatocyte batches that may reflect the metabolic differences between hepatocyte donors. Immunolabeling did not bring any additional values compared to the fluorescent probe staining in the study of morphology of mitochondria. Additionally, it was noticed that treatment with paraformaldehyde significantly changed the hepatocyte mitochondria morphology. Overall, more effort is needed to develop image analysis of mitochondria morphology. Finally, studying mitochondrial morphology has proven to be difficult, and this study did not unfortunately reveal any information about the adaptive responses of mitochondria for drug-induced liver injury.
  • Munsterhjelm, Nina (2012)
    The liver is the major site of drug metabolism and excretion. Within the liver endogenous and exogenous compounds are eliminated through many metabolizing enzymes. Drug removal is not only dependent on metabolic enzymes, but also on transporters. Before cellular metabolism can occur, a drug must first enter the hepatocyte. Very lipophilic drugs enter the cell membrane through passive diffusion, but polar or ionized organic compounds can enter the cell membrane only by transporters. Transporters in the basolateral membrane of the hepatocyte facilitate drug entry and access to drug metabolizing enzymes. Transporters in the canalicular domain (apical) of the hepatocyte faclitate removal of drugs or metabolites from the cell interior. Recent studies have shown that transporters can mediate drug-drug interactions, and transporter genes are subject to genetic polymorphism which may affect pharmacokinetic parameters of a drug, such as absorption, distribution, and excretion. This Master's thesis consists of two parts, a literature review and an experimental section. In the literature review two transporters, OATP1B1 and MRP2, are discussed in detail. OATP1B1 is expressed on the basolateral and MRP2 on the apical membrane of the hepatocyte. These transporters are responsible for the vectorial transcellular hepatobiliary transport of various organic anions in humans. The experimental section aims at modelling vectorial hepatobiliary transport of three compounds in a double-transfected (OATP1B1/MRP2) MDCKII cell line. All three compounds studied, rosuvastatin, estrone sulphate, and estradiol glucuronide, are substrates of both transporters. Wild type (WT) MDCKII cells were used as a control. Tight junctions form a barrier between cells. This barrier regulates the paracellular passage of, for example, water, ions, large molecules, and drugs. In the experimental section the tight junctions were reversibely opened to distinguish between trans- and paracelluar routs of transport of the three compounds studied. Permeation of rosuvastatin and estradiol glucuronide in the basolateral to apical direction was faster in the double-transfected cell line compared to the MDCKII-WT cell line. Permeation of estrone sulphate, however, behaved unexpectedly in the double-transfected cell line. The permeation of this compound was almost equal in the apical to basolateral and basolateral to apical direction. The reason for this unexpected finding remains unclear. By opening the tight junctions the permeation of all compounds in both cell lines was increased, indicating that the compounds studied preferred the paracellular route and the importance of transporters were reduced. The double-transfected MDCKII cell line is a useful in vitro model of hepatic vectorial transport of organic anions in humans.