Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "hydrophobic interactions"

Sort by: Order: Results:

  • Manninen, Kalle (2023)
    Oncolytic adenoviruses are a new cancer treatment platform which aims to eliminate cancer through direct lysis of cancer cells by viral replication and the activation of the immune system by the release of tumor antigens upon oncolysis. In the PeptiCRAd technology, the activation of an anti-cancer immune response is enhanced by the addition of poly-lysine modified cancer peptides, where the antigen presentation to the immune system is improved in comparison to plain oncolytic viruses. PeptiCRAd complexes have been assumed to form solely by electrostatic interactions, but the thermodynamic profiles and mechanisms involved in the complexation have not been previously addressed. Thus, by adding isothermal titration calorimetry as part of the analysis repertoire provides valuable information of the characteristics of PeptiCRAd complexes. In this study, the applicability of isothermal titration calorimetry in PeptiCRAd complexation analyses was evaluated based on initial peptide-to-virus and virus-to-peptide titrations, and a method of analysis was created for the thermodynamics of the interactions of the complex. Optimization of the experimental method (i.e., titration protocol) and the data analysis (i.e., calculation models) remains inconclusive for quantitative analysis as data obtained from the measurements was mainly of bad quality, thus requiring further optimization to obtain reliable data. However, using surface plasmon resonance as an already established method for poly-lysine peptide-virus interaction studies gave robust data and can be used as a base or guideline to further develop isothermal titration calorimetry analyses for characterizing PeptiCRAd complexes. Although isothermal titration calorimetry measurements were unsuccessful for quantification purposes, it was possible to qualitate the mechanisms of PeptiCRAd complexation for four different peptides with fair confidence. The peptides showed low heats of binding, and positive and negative cooperative binding in ionic and non-ionic solutions, respectively. Based on this, the binding of peptides in PeptiCRAd complexes was determined to be driven by hydrophobic inter-peptide interactions on the virus surface, although an electrostatic attraction is indeed present at the virus-peptide interface, initiating the binding event. Also, improvements to the titration protocol for PeptiCRAd analyses with isothermal titration calorimetry are suggested for further optimizations in the future to conclusively determine the applicability of the isothermal titration calorimetry technique for characterizing peptide-virus interactions of PeptiCRAd complexes.