Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "kala"

Sort by: Order: Results:

  • Niemissalo, Sanna (2022)
    The aim of this master’s thesis was to investigate whether drug-induced inhibition of cytochrome P450 enzymes (CYP), especially time-dependent inhibition (TDI), could be the reason for bioaccumulation of the pharmaceuticals present in the aquatic environment in fish and whether the in vitro method could identify pharmaceuticals causing an environmental risk, which should primarily be investigated more closely. The half-maximal inhibitory concentrations (IC50) of seven antimicrobial drugs detected in the environment (erythromycin, clarithromycin, ketoconazole, clotrimazole, miconazole, ciprofloxacin, and sulfamethoxazole) and three known human time-dependent inhibitors (furafylline, diltiazem and verapamil) chosen for the validation of the method, were determined by EROD (7-ethoxy-resorufin-O-deethylase) and BFCOD (7-benzyloxy-4-trifluoromethyl-coumarin-O-debenzyloxylase) activities. The IC50 shift method and commercially available rainbow trout (Oncorhynchus mykiss) liver microsomes were used in determinations. The known human time-dependent inhibitors chosen for the validation of the method, furafylline (EROD) and diltiazem (BFCOD) proved to be possible time-dependent inhibitors also in rainbow trout in vitro, but this was not observed for verapamil (BFCOD). All antimicrobial drugs, except ciprofloxacin, inhibited more selectively BFCOD-reaction, as in human. In the case of sulfamethoxazole, inhibition was not observed at the concentrations used (0–500 µmol/L). Both enzyme activities (EROD and BFCOD) were inhibited in rainbow trout by ketoconazole, clotrimazole and miconazole. Among antimicrobial drugs acting as time-dependent inhibitors in human, erythromycin inhibited BFCOD activity in a time-dependent manner also in rainbow trout, but this was not observed for clarithromycin. Strongest inhibitors for CYP enzymes of rainbow trout in vitro were ketoconazole (EROD, IC50=4,19 µM and BFCOD, IC50=2,31 µM) and clotrimazole (EROD, IC50=33,78 µM and BFCOD, IC50=1,55 µM). The IC50 values of diltiazem, erythromycin, clarithromycin, ciprofloxacin, and verapamil were of the same order of magnitude as in human. The IC50 values of furafylline, ketoconazole, clotrimazole and miconazole were several times higher in rainbow trout than in human. Based on the results of this study, the IC50-shift method is also valid for fish, but there are differences in the inhibition potencies between human and fish, and the inhibition potency of human CYP enzymes cannot therefore directly predict enzyme inhibition of fish or the mechanism of inhibition. The In vitro measured IC50 values of rainbow trout were several orders of magnitude higher than the average concentrations of the pharmaceutical residues measured in the environment. Exposure to pharmaceutical mixtures is long-term, so interactions and bioaccumulation may still be possible due to inhibition of CYP enzymes. Developing a valid in vitro method for environmental risk assessment would be important, as animal experiments are ethically challenging.