Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "lääkeaineenvapautuminen"

Sort by: Order: Results:

  • Nurmi, Riikka (2017)
    Liposomes are spherical nano-sized drug delivery systems which are composed of lipid bilayer. With liposomes drugs can be targeted for example to tumours and targeting can be passive or active. Drug release from liposomes can also be activated by different methods. Light is very promising triggering method, because it enables drug release at specific time and site. This study examined light activated indocyanine green (ICG) liposomes. Drug release from liposomes happens because ICG converts light energy to heat. ICG is clinically approved imaging agent, so ICG liposomes are very promising drug delivery systems even for clinical use. Liposomes were prepared by thin-film hydration method. One aim of the study was to prepare as small ICG-liposomes as possible. The bigger 100 nm liposomes were studied in three different formulations and the purpose was to find differences between those formulations. In formulation A ICG was in PEGs, in formulation B ICG was in lipid bilayer with no PEGs and in formulation C ICG was supposed to be in lipid bilayer although the formulation C included PEGs. In this study, the cell up take of ICG liposomes was studied with pharmacokinetic model and data from in vitro studies was supposed to use in a pharmacokinetic model. In this study, it was possible to prepare 40 nm sized ICG-liposomes. Small liposomes did not release encapsulated calsein as well as bigger 100 nm liposomes. The decreased release from smaller liposomes was probably explained by the results witch pointed out that transition temperature of small liposomes was higher than transition temperature of bigger liposomes. In the future, the lipid composition of the small liposomes need to be reoptimized, that the release would be more effective. This study however proved that small ICG-liposomes can be prepared and the small size lasts even over three months. Three different formulations of 100 nm liposomes were studied and the differences between the properties of the formulations were found. ICG in the lipid bilayer changed properties of the formulation B and the passive release of the calsein and release during the lightning were increased. In formulation C transition temperature was decreased and its storage life was lower than in other formulations. Formulation A was best for the next studies and the phospholipid composition of other formulations need to be optimated that drug release and storage life would be good enough. Intracellular release properties of liposomes were studied with Sytox red probe. Fluorescence of Sytox red increases when it binds with DNA or RNA. With this study, it was proved that liposomes release Sytox red inside the cells and that the lightning time affects to the release. The results weren't useable for pharmacokinetic model, so the model was made based by literature. Pharmacokinetic model can be used in the future studies and different in vitro or in vivo results can be combined with the model.