Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "magnesium stearate"

Sort by: Order: Results:

  • Kosimov, Yorkin (2016)
    The main goal of this thesis was to examine the effect of the compaction speed on the compressional behaviour of two excipients, microcrystalline cellulose and starch, using an eccentric and rotary presses. First, the average weights of the tablets have changed due to the increasing speed, as the volume of die kept constant. They were grown, for eccentric press, or were reduced, for rotary press. Second, Compression force, needed to obtain tablets with similar strength, was increased during both tableting methods. The eccentric compaction was more stable regarding to the speed increase. Tablets were formed from all of the blends, with more or less success. Additionally, as a result of force increase, resulted tablets were denser and less porous because of speed expansions during eccentric press. However, the blends containing 80% or more starch were not able to form tablets during the rotary press, because of the very poor die filling. Furthermore, blend containing 60% starch has shown very poor tabletability at speeds over 34 rounds per minute. The elastic recovery of tablets was very sensitive to the speed rises and to the concentrations of excipients during the eccentric press. Tablets have demonstrated an increase in their elastic recovery values in all cases. However, the tablets with a higher concentrations of starch were significantly more sensitive to the increasing compaction velocity. According to these results, it can be concluded that the starch exhibit more elasticity than microcrystalline cellulose. The effect of magnesium stearate on tablets' properties, such as the weight and the porosity, and compaction parameters, such as ejection force have also examined. As it expected from boundary lubricants, magnesium stearate has significantly reduced the ejection force values, required for removing the tablet from the die, compared with unlubricated tablets. Additionally, tablets with lubricants were heavier and more porous. The compression force was adjusted according to the crushing strength values in rotary press. This was due to the fracture variations of such tablets during diametrical compression, which would give unreliable values of tensile strength. Moreover, elastic recovery, porosity, density values were not calculated for scored tablet, due to either the lack of punch displacement data from rotational machine or the relative complexity of measuring the volume of such tablets. If these values had been available for both machines, their comparison with respect to these parameters would be possible and the results of this thesis would have been more appropriate.
  • Koskela, Jaana (2015)
    Mechanofusion is a dry coating method in which the high shear forces cause a mechanochemical reaction between the processed particles. With the approach it is possible to improve flowability of a host cohesive powder when the guest particle forming the coating is magnesium stearate. Applying mechanofusion in tablet formulations could make poor flowing large dose drug substances suitable for direct compression. However, it is well known that magnesium stearate decreases mechanical strength of the tablets and prolongs disintegration and dissolution time of tablets. A previous study, however, showed that it is possible to compress tablets from a formulation dry coated with magnesium stearate without reducing the dissolution rate. Dry coating with magnesium stearate and its effect on a plastic material, known to be sensitive for the negative effects of magnesium stearate, has not been studied previously. The aim of the study was to examine the effect of mechanical dry coating with magnesium stearate on the physical qualities and compression behaviour of a plastic material. The effect was studied by dry coating four grades of microcrystalline cellulose with different magnesium stearatecon centrations. The approach was to find an optimum between the flowability and compressibility of the powders by using different process parameters. Microcrystalline cellulose with median particle size of 23 and 78 µm were also mechanofused without magnesium stearate in order to examine whether mechanofusion itself has an effect on the properties of microcrystalline cellulose. Pure raw materials and Turbula-mixed magnesium stearate and microcrystalline cellulose blends were studied as references. Dry coating with magnesium stearate improved the flow properties of microcrystalline cellulose with D50 value less than 78 µm. Powders with D50 value greater than 144 µm, however, break down under the shear during the process and hence their flow properties were decreased. This suggests, that mechanofusion as a process is more suitable for the small particle size microcrystalline cellulose powders which, based on the results, can withstand the high-shear forces better. Mechanofusion of plain microcrystalline cellulose (D50 78 µm) revealed that the moisture content of the powder increased and stronger tablets could be compressed. Mechanofusion may cause changes to the microstructure of microcrystalline cellulose particles and to its ability to adsorb moisture. Dry coating with magnesium stearate was very effective even with short processing times and relatively low blade speeds, and it was challenging to compress hard tablets from the mechanofused mixtures. Plastic material was found to be sensitive for the negative effects of magnesium stearate, and better flow properties of a mechanofused powder resulted in weaker compressed tablets.
  • Viskari, Ansa (2012)
    The purpose of this study was to investigate how the mixing time of the magnesium stearate affects on the compressibility of partially pregelatinized maize starch. Pregelatinized maize starch is used in pharmaceuticals as a filler, binder and as disintegrant. Because pregelatinized maize starch has lubricant characteristics itself, it is known to be sensitive for the amount and the mixing time of magnesium stearate. The aim is that magnesium stearate is not totally homogenously mixed on the powder surfaces so that even, clean powder surfaces exist. Homogeneous mixing means that particles are coated with magnesium stearate, which as a hydrophobic ingredient prevents bond formation between plastically and elastically behaving particles. Too much magnesium stearate and/or too long mixing time may cause weakening of tablet tensile strength, laminating and capping. The weakening of the tensile strength of the tablet increases friability, which causes problems during packaging process and the transportation. Too much magnesium stearate may also lengthen the disintegration time and slow down the dissolution. The aim of this study was to compare four different brands of pregelatinized maize starch. The purpose was to find differences affecting the compressibility behavior. Also the effect of the mixing time of magnesium stearate for compression behavior of masses were studied. The brands investigated were C*PharmGel DC 93000, Lycatab® C, Starch 1500® and SuperStarch 200®. First mentioned was a reference product which is not manufactured any more. There was only one batch of the reference product but three batches from other products to be able to investigate also batch to batch variation. The characteristics studied from pregelatinized starch samples were bulk density, apparent density and true density, flowability, moisture sorption, moisture content, pH value, swelling volume and particle size. Also NIR, FTIR and Raman spectroscopy and X-ray powder diffraction method were used. Weight, tensile strength, dimensions, friability, disintegration time and moisture sorption were studied for tablets. The compressibility of the mass and elastic behavior of tablets was studied. Pictures of the tablets were also taken by scanning electron microscope. When the mixing time of magnesium stearate was increased from 2 minutes to 5 minutes, the compression pressure needed for pressing tablets for 80 N strength increased 200-700 N depending on the brand of pregelatinized maize starch. Based on the results the best alternative to replace C*PharmGel DC 93000 was chosen to be SuperStarch 200®. Scanning electron microscope pictures showed that C*PharmGel DC 93000 deviates from other qualities studied by being roundish and regular in shape. SuperStarch 200® and Starch 1500® reminded remarkably each other. Lycatab® C was the biggest in particle size and very irregular in shape. The differences found in tabletting followed the expectations based on the SEM-pictures. SuperStarch 200® showed to best compressibility in lowest strain strength and after C*PharmGel DC 93000 it was least sensitive for mixing time of the magnesium stearate. It also has least elastic recovery. The differences between SuperStarch 200® and Starch 1500® in compression properties were moderate but clear. Lycatab® C had clearly the weakest compression properties.
  • Liimatta, Janne (2021)
    During co-processing, magnesium stearate can induce surface coating on carrier particles in powders which contain at least one other component in addition to magnesium stearate. Magnesium stearate is sometimes added to powder mixtures as it is known to have beneficial effects on powder characteristics, such as physical and chemical stability, and flowability. In order to fully optimize and control the coating/mixing process, it is necessary to be able to characterize the quality of surface coating. Various methods can be used in determining the coating of powder particles. They can roughly be divided into two different categories: direct and indirect methods. For example, spectrophotometric instruments, which are used to visually express the element distribution on particle surface, are considered direct methods. Indirect methods include methods in which coating parameters are inferred using other properties such as water sorption and powder flowability. Principally direct methods have been used in previous studies to determine the quality of coating. Therefore, the area of interest was especially to study indirect methods and compare them to results obtained using direct methods. Having knowledge of the suitability of indirect methods would be interesting as they might have many benefits compared to direct methods, such as quicker analysis speed and cost-efficiency. The aim of the study was to examine the suitability of direct and indirect methods in studying the surface of powders containing magnesium stearate and active pharmaceutical ingredients (APIs) or lactose, more closely how magnesium stearate was placed on carrier particles as well as the uniformity and the thickness of coating layer. The used methods were selected using literature and own consideration while taking the available equipment into account. The powders containing API (d50 < 10 μm) or lactose (d50 > 80 μm) with magnesium stearate had substantially differing characteristics and thus behaved differently. Therefore, there were differences in the suitability of analytical methods in determining surface of powders. Powders containing lactose and magnesium stearate were able to be examined using direct methods (SEM-EDS and ToF-SIMS) and several indirect methods. Samples with API and magnesium stearate were able to be studied with fewer methods. Validation of the suitability of these methods need more research. However, according to the results from this study, it is probable that surface characterization of studied co-particles can be achieved with direct, but also with indirect methods.