Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "membraani vesikkelit"

Sort by: Order: Results:

  • Suvanto, Satu (2014)
    P-glycoprotein is an ATP-dependent efflux protein expressed in many tissues which participate in absorption, distribution and elimination of drug molecules. It can mediate clinically significant drug-drug interactions. Characteristics of P-gp have been studied widely and crystal structure of mouse P-gp has been successfully determined. P-gp binds its substrates either directly from cell membrane or from cytosol and it has at least three separate binding sites. P-gp has wide selection of substrates from many therapeutical groups. According to the latest computational models, a typical P-gp substrate can be defined with the help of molecule structural factors rather than physicochemical properties. However function of P-gp is very complex which is why drug-drug interactions should be studied for each drug pair separately. In addition expression of P-gp is regulated by nuclear receptors PXR and CAR thus P-gp induction is separate, which also complicates P-gp mediated interactions. P-gp substrates celiprolol, talinolol, aliskiren and fexofenadine have in vivo interactions with P-gp inhibitors or inducers. The objective the experimental work was to study suitability of two in vitro methods, MDCKII-cell permeability assay and MDR1-vesicle transport assay, for predicting in vivo effect of drug-drug interaction. ATP-dependent transport of substrates was determined in membrane vesicles extracted from human P-gp expressing Sf9 cells. Cell assay was used to determine efflux ratio (ER) for all the substrates alone and efflux ratio with P-gp inhibitor itraconazole for the substrates which have reported in vivo interaction with itraconazole. All compounds showed ATP dependent transport in MDR1-vesicles and celiprolol, talinolol and fexofenadine showed ER over 1 in MDCKII-MDR1 cells thus according to vesicle assay and ER-value they are P-gp substrates. However ER of talinolol and fexofenadine was not affected by inhibitor itraconazole, thus the drugs did not fulfil the inhibition criteria of FDA for P-gp substrates. The performing of interaction test was possible failed due lack of pre-incubation of the cells with the inhibitor. Talinolol had the highest ER in thus according to cell experiments talinolol has P-gp dependent transport. Aliskiren ER was not obtained because of the low recovery of the drug but it had clear ATP-dependent transport in the vesicle assay as was expected according to in vivo results. According to in vitro results and in vivo studies celiprolol is a poor P-gp substrate whereas fexofenadine showed P-gp mediated transport both in vitro and in vivo. The results suggest that significance of drug interaction is difficult to predict with the vesicle and the cell assay but they can be used to recognize P-gp substrates.