Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "mikrodialyysi"

Sort by: Order: Results:

  • Montonen, Heidi (2013)
    Literature review: The plasma membrane DA transporter (DAT) belongs to the family of Na+/ClÙÄÉ≠ dependent neurotransmitter transporters. DAT is the primary mechanism for clearance of dopamine from the extracellular space and transporting it back to the presynaptic nerve terminals. There's a great interest in the DAT and its regulation as its substrate, dopamine, mediates a wide array of physiological functions e.g. locomotor activity, cognition and the control of motivated behaviors. With selective transport DAT limits the intensity and the duration of dopaminergic signal. Its function is regulated by several kinases, phosphatase and protein-protein interactions. The altered expression of DAT may be related to several neurological diseases such as Parkinson's disease, addiction and ADHD. To study DAT's function, several genetically modified mouse lines including DAT knockout mice, DAT knockdown mice and DAT knock in mice with elevated DAT levels have been generated. Experimental part: Glial cell line-derived neurotrophic factor (GDNF) plays important role in the survival and function of dopaminergic neurons, learning, memory and synaptic plasticity. More recently, several studies have shown that GDNF can also negatively regulate the actions of abused drugs. The aim of this study was to investigate GDNF's role and mechanism of action in plasticity and function of the dopaminergic neurons projecting to striatum. For that purpose, we used in vivo microdialysis in freely moving mice. We chose two different mouse lines: MEN2B mice with constitutive active Ret-signaling and elevated striatal dopamine concentrations, and GDND-cKO mice that lack GDND in the central nervous system. Microdialysis guide cannula was implanted in the dorsal striatum in the stereotaxic surgery and the mice were allowed to recover for 5-7 days. The concentrations of dopamine and its metabolites DOPAC and HVA and also 5-HIAA were determined from the samples by highperformance liquid chromatography. Microdialysis was performed twice for every mouse on days 1 and 4. Between microdialysis days, the mice were given amphetamine 1 mg/kg i.p. on days 2 and 3. In the microdialysis experiment, the mice received amphetamine stimulation (100 µM/60 min) via microdialysis probe. The placements of microdialysis probes were verified from fixed brain sections after the experiments. Amphetamine increased the dopamine output in both mouse lines, but there were no statistically significant differences in striatal dopamine concentrations between genotypes neither after acute nor chronic administration. However, there was a difference between the dopamine outputs in days 1 and 4 in both MEN2B and GDNF-cKO mice: The striatal dopamine concentrations were significantly lower on the second microdialysis day. This may be a sing from tolerance to the drug. However, without more research, it is not possible, by this experiment, to draw direct conclusions of GDNF's role in addiction and in plasticity in striatum. It is possible that the differences between genotypes are too small to be seen with microdialysis. Development of compensatory mechanisms in mice cannot be ruled out either. Effects may also vary between different brain areas.
  • Pulkkinen, Nita (2013)
    Amphetamine and its derivatives are widely used as medicines but also abused as psychostimulant drugs. The most important action of amphetamine in the central nervous system is to release dopamine to the extracellular space which leads to enhanced dopaminergic neurotransmission. Amphetamine also releases serotonin and norepinephrine by similar mechanisms and it affects indirectly other neurotransmitter systems too. It still remains partly unsolved how amphetamine exactly releases monoamines but it is known to have multiple sites of action. Amphetamine is a substrate for dopamine transporter (DAT) and it acts as a competitive inhibitor of the transporter reducing uptake of dopamine. Amphetamine enters the cell mainly through DAT and partly by diffusing through the cell membrane. The drug induces changes in DAT leading to reverse transport of dopamine from the cytoplasm into the synaptic cleft through DAT. Amphetamine is also substrate for vesicular monoamine transporter 2 (VMAT2) preventing the uptake of dopamine into storage vesicles and promoting its release from the vesicles to cytoplasm. Additionally, amphetamine inhibits monoamine oxidase (MAO), enzyme which degrades monoamines. It also enhances dopamine synthesis and according to recent studies amphetamine augments exocytotic dopamine release. Drug addiction is a chronic disorder related to structural and functional adaptive changes of neurons, called neuronal plasticity. GDNF (glial cell line-derived neurotrophic factor) is one of the many molecules regulating plasticity. It is especially important to the dopaminergic system and some investigations have suggested that it has potential as a protective agent against addiction. The aim of this study was to investigate how the overexpression of endogenic GDNF affects dopaminergic system and how it changes drug responses. A hypermorphic mouse strain (GDNFh), which is overexpressing physiological GDNF, was used. Their wild-type littermates were used as controls. Using brain microdialysis it was measured how the extracellular dopamine concentration changes in striatum and nucleus accumbens (NAcc) after amphetamine stimulation. Amphetamine was administered straight to the brain through the microdialysis probe. Microdialysis was performed on days 1 and 4, and on days 2 and 3 the mice were given amphetamine intraperitoneally. This was done to find out if the response to amphetamine changed after repeated dosing. In addition to these experiments, the biological activity of three small-molecule GDNF mimetics in intact brains was tested by microdialysis. On the first day amphetamine increased striatal dopamine output more in the heterozygous GDNFh mouse than in the wild-type mice. This stronger reaction to amphetamine may be explained by the enhanced activity of DAT in the GDNFh-het mice leading to higher intracellular amphetamine concentration. Also the striatal dopamine levels are increased in the GDNFh-het. On the fourth day no differences were detected between the genotypes. In the NAcc no significant difference was found between the genotypes. Instead in NAcc amphetamine caused a smaller increase in the dopamine output on day 4 than on day 1 in both genotypes suggesting that tolerance was developed. These results confirm that endogenic GDNF has a remarkable role in the regulation of the dopamine system and hence addiction but further investigations are needed to clarify its versatile actions. The small-molecule GDNF mimetics increased striatal dopamine output thus showing biological activity and encouraging to further investigations.
  • Renko, Juho-Matti (2012)
    Review of the literature: The purpose of the review is to go through what is known about mechanisms of actions of different neurotrophic factors (GDNF, neurturin, CDNF and MANF) and how they are transported within the brain. Neurotrophic factors are endogenous and secreted proteins which have a pivotal role in the development and maintenance of neurons. They support the survival of neurons and they can help them to recover from different injuries. Due to these functions neurotrophic factors might be beneficial for the treatment of neurodegenerative disorders like Parkinson's disease. There are a great deal of studies that clearly show the neuroprotective and neurorestrorative function of GDNF and neurturin on dopaminergic neurons. They are also studied in clinical studies with Parkinson's patients but the results have been partly contradictory. The signalling route of GDNF and neurturin via RET tyrosinekinasereceptor is fairly well known but the other mechanisms of action of these factors needs to be studied further. CDNF and MANF constitute a novel, evolutionarily conserved family of neurotrophic factors. They are shown to have neuroprotective and neurorestrorative actions on dopaminergic neurons both in vitro and in vivo in a rodent model of Parkinson's disease. The mechanisms of action of CDNF and MANF are not quite clear at the moment. There are two different domains in their structure both of which are likely to carry different functions. The N-terminal domains of these proteins are close to saposins, lipid and membrane binding proteins, some of which are shown to have neurotrophic and anti-apoptotic effects. The C-terminal domain of MANF, in turn, is structurally close to the SAP-domain of Ku70-protein which binds Bax in the cytoplasm and thus inhibits apoptosis mediated by Bax. CDNF and MANF might protect neurons both via intracellular mechanisms and extracellularly acting like a secreted neurotrophic factor. CDNF and GDNF are transported retrogradially from striatum to substantia nigra. MANF, unlike the others, is transported from striatum to the frontal cortex. MANF and CDNF are shown to have better diffusion properties in the brain parenchyma than GDNF. Experimental part: We studied, by means of microdialysis, the effects of CDNF, MANF and GDNF on the dopaminergic neurotransmission of naive rats within the striatum. Neurotrophic factors (10 µg) and PBS as a negative control were injected into the left striatum in stereotaxic surgery. After this rats recovered one week before the first mircodialysis. The second mircodialysis was performed three weeks after the surgery. The samples were collected from the left striatum of freely moving rats. During the microdialysis neurotransmission was stimulated by replacing the perfusion solution with hypertonic potassium solution and with amphetamine solution. The concentration of dopamine, DOPAC, HVA and 5-HIAA was measured from the dialysate samples. In vivo TH-activity experiment was carried out for three rats in each group. NSD1015 was injected i.p.after which rats were decapitated and their striatums were dissected. The concentration of L-DOPA, dopamine and metabolites on the treated and untreated hemisphere were analyzed from the tissue samples. The amount of L-DOPA in the striatum after NSD1015-treatment indicates how active TH-enzyme is. There were no significant differences in the concentrations of dopamine and metabolites during the baseline. MANF and CDNF increased the release of dopamine from the nerve terminals compared to GDNF and PBS one week after the surgery. Three weeks after the surgery there was still significant increase in the release of dopamine in MANF group compared to GDNF group. Also the dopamine-DOPAC-turnover was increased significantly in MANF group compared to GDNF and PBS groups one week after the surgery. DOPAC/HVA -ratio was significantly smaller in GDNF group than in other groups one week after the surgery. These findings suggest that MANF potentiates dopaminergic neurotransmission most drasticly. The effects of MANF seem to last longer time than the effects of other neurotrophic factors. CDNF seems to increase the release of dopamine from the nerve terminals as well. The potentiation of dopaminergic neurotransmission could be due to increased biosynthesis of dopamine or due to the potentiation of the function of nerve terminals. In the results of the TH-activity experiment there was a trend according to which L-DOPA is synthesized less after the neurotrophic factor treatment that after the PBS treatment. This suggests that neurotrophic factors might decrease the activity of TH-enzyme.
  • Uhari, Johanna (2010)
    Part I: Parkinson's disease is a slowly progressive neurodegenerative disorder in which particularly the dopaminergic neurons of the substantia nigra pars compacta degenerate and die. Current conventional treatment is based on restraining symptoms but it has no effect on the progression of the disease. Gene therapy research has focused on the possibility of restoring the lost brain function by at least two means: substitution of critical enzymes needed for the synthesis of dopamine and slowing down the progression of the disease by supporting the functions of the remaining nigral dopaminergic neurons by neurotrophic factors. The striatal levels of enzymes such as tyrosine hydroxylase, dopadecarboxylase and GTP-CH1 are decreased as the disease progresses. By replacing one or all of the enzymes, dopamine levels in the striatum may be restored to normal and behavioral impairments caused by the disease may be ameliorated especially in the later stages of the disease. The neurotrophic factors glial cell derived neurotrophic factor (GDNF) and neurturin have shown to protect and restore functions of dopaminergic cell somas and terminals as well as improve behavior in animal lesion models. This therapy may be best suited at the early stages of the disease when there are more dopaminergic neurons for neurotrophic factors to reach. Viral vector-mediated gene transfer provides a tool to deliver proteins with complex structures into specific brain locations and provides long-term protein over-expression. Part II: The aim of our study was to investigate the effects of two orally dosed COMT inhibitors entacapone (10 and 30 mg/kg) and tolcapone (10 and 30 mg/kg) with a subsequent administration of a peripheral dopadecarboxylase inhibitor carbidopa (30 mg/kg) and L- dopa (30 mg/kg) on dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens of freely moving rats using dual-probe in vivo microdialysis. Earlier similarly designed studies have only been conducted in the dorsal striatum. We also confirmed the result of earlier ex vivo studies regarding the effects of intraperitoneally dosed tolcapone (30 mg/kg) and entacapone (30 mg/kg) on striatal and hepatic COMT activity. The results obtained from the dorsal striatum were generally in line with earlier studies, where tolcapone tended to increase dopamine and DOPAC levels and decrease HVA levels. Entacapone tended to keep striatal dopamine and HVA levels elevated longer than in controls and also tended to elevate the levels of DOPAC. Surprisingly in the nucleus accumbens, dopamine levels after either dose of entacapone or tolcapone were not elevated. Accumbal DOPAC levels, especially in the tolcapone 30 mg/kg group, were elevated nearly to the same extent as measured in the dorsal striatum. Entacapone 10 mg/kg elevated accumbal HVA levels more than the dose of 30 mg/kg and the effect was more pronounced in the nucleus accumbens than in the dorsal striatum. This suggests that entacapone 30 mg/kg has minor central effects. Also our ex vivo study results obtained from the dorsal striatum suggest that entacapone 30 mg/kg has minor and transient central effects, even though central HVA levels were not suppressed below those of the control group in either brain area in the microdialysis study. Both entacapone and tolcapone suppressed hepatic COMT activity more than striatal COMT activity. Tolcapone was more effective than entacapone in the dorsal striatum. The differences between dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens may be due to different properties of the two brain areas.
  • Tiilikainen, Saija (2016)
    Prolyl oligopeptidase (PREP) is a serine protease which is extensively present in the mammalian system and especially abundant in the brain. Despite the long research history of PREP its physiological function has remained unclear. PREP has been suggested to regulate the functions of many bioactive peptides by hydrolysis and on the other hand to participate in several intracellular processes probably via direct protein-protein interactions. One of the functions suggested for PREP is the regulation of the brain neurotransmitter systems and based on, for instance, the location in the brain PREP has been connected to both excitatory and inhibitory neurotransmitter systems. The literature review of this thesis first describe the brain neurotransmitter systems associated to PREP in general with some examples of diseases related to their malfunctions. In addition the structure of PREP and its location in the brain, both subcellular and cellular levels, and in distinct neurotransmitter systems, are presented, after which the different proposed functions for PREP are reviewed. The aim of the experimental part of this thesis was to investigate the effects of PREP on the brain neurotransmitter concentrations in the mouse nigrostriatal pathway and also to mouse motor behavior. The main research methods were microdialysis, tissue assays and cylinder test. The study was composed of two sections with five week duration each. The first section was performed with wild-type mice expressing naturally PREP and the second section with PREP-knockout (ko) mice and their wild-type littermates. The mice were injected unilaterally above the substantia nigra with adeno associated (AAV1) hPREP viral vector or with AAV1-eGFP (green fluorescent protein) viral vector as a control treatment. The cylinder test was carried out before the injection, and two and four weeks afterwards. Microdialysis was used to study the actions of PREP on the extracellular concentrations of dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), gamma-aminobutyric acid (GABA) and 5-hydroxyindoleacetic acid (5-HIAA), the major metabolite of serotonin (5-HT). In addition to the baseline assay the concentrations were measured after two amphetamine treatments (10 and 30 µM) administered via the microdialysis probe. The probe guide cannulas were inserted to mice striatums 1-2 weeks before the microdialysis measurement. In the end of the experiment the tissue concentrations of DA, DOPAC, HVA, 5-HT and 5-HIAA were measured from striatum and substantia nigra. Both the microdialysis and tissue sample concentrations were quantified with high performance liquid chromatography. In the first study section the PREP enzyme activity was also determined from striatum. Neither the complete deprivation nor over-expression of PREP in the nigrostriatal pathway had clear or consistent effects on the levels of neurotransmitters studied when compared to naturally occurring PREP expression. When comparing the differences between control treated groups of PREP-ko and littermate mice, a greater amphetamine stimulated DA-levels was seen in the former group proposing negative regulatory influence of PREP. In both study sections the tissue assay results were difficult to interpret due to observed responses also with AAV1-eGFP control treatment in comparison with untreated side of the brain. This was seen as a lower DA- and DOPAC-levels in substantia nigra and thus the meaning of the changes caused by PREP treatment is hard to comprehend. The results of the cylinder test may implicate some protective effect of the PREP-ko-genotype against viral vector injections in general. Then again the existence of compensatory mechanisms is possible when using knockout animals and thus the genotype differences are hardly ever unequivocal. The results of this thesis do not suggest outright regulatory effects of PREP on the neurotransmitter functions in the mouse nigrostriatal pathway although the confirmation of this requires further studies, especially in regard to GABAergic and glutamatergic systems. Studies should include a scale of different behavioral tests of motor activity and repeated microdialysis experiment with some defining method changes. The possible function and mechanisms of PREP as a regulator of neurotransmitter intake or release is rationale to study at molecular level with applicable methods.
  • Juuti, Hanne (2010)
    The blood-brain barrier protects brain from xenobiotics that are in blood. Different in vivo and in vitro methods have been developed for studying blood brain barrier and those can be found in the literature. There are only few computational models pharmacokinetics of compounds in the brain. In this study permeability factors, which were measured in vitro or in vivo, were collected from literature. Additionally two different pharmacokinetic computer models of blood-brain barrier were described. One of which is called microdialysis model and the other efflux model. Microdialysis model is a very simple two compartmental model, the compartments being the blood and the brain. Five substances were simulated according to the values measured in vivo in rat. The model did not correlate well with the in vivo results, because of the simplicity of the model as the model missed the compartment of brain tissue and the kinetics of transporters. Efflux model has three compartments, blood, blood brain barrier endothelial cells and brain. The model was used to study the impact of the of efflux transporter at the luminal barrier of endothelial cells and passive permeability to the steady-state concentration of a compound in the brain extracellular fluid with theoretical simulations. The relation between free drug concentrations in blood and brain extracellular fluid (Kp,uu) was studied. The impact of Michaelis-Menten kinetics of efflux transporter to the concentration of compound was shown in the results. The efflux model is suitable for theoretical simulations. It is possible to add new active transporters. With theoretical simulations the results from in vitro and in vivo studies can be combined and the different factors can be studied in one simulation.