Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "motoriikka"

Sort by: Order: Results:

  • Tapanainen, Tuukka (2017)
    The α5 subunit of nicotinic acetylcholine receptors forms functional receptors with other subunits as a structural subunit. It affects the structural and functional properties of the nicotinic receptor by increasing calcium permeability and accelerating desensitization. In the mammalian brain, the α5 mRNA is widely expressed, mostly in substantia nigra pars compacta, ventral tegmental area and interpeduncular nucleus. Its protein has been identified in various distinct brain areas, such as striatum, cortex and medial habenula. In the dorsal striatum partaking in motor functions, the α5 subunit modulates the release of dopamine, thus it is believed to have an impact on motor function. In the experimental part of the thesis mice lacking the α5 subunit were injected unilaterally with neurotoxin 6-hydroxydopamine (6-OHDA) in the striatum. The purpose was to determine the importance of the subunit with regard to the lesion extent and motor function. The motor functions of α5-deficient and wild type control mice were assessed in amphetamine- and apomorphine-induced rotametry. After the tests the mice were euthanized and their substantia nigra and striatal brain samples were collected for further analysis. The number of dopamine cells in the medial and dorsal tier of substantia nigra were determined, so as to quantify the extent of the lesions and to explain the research group's previous finding about the α5-deficient mice spinning less ipsilaterally in amphetamine induced rotametry. The α5-deficient mice were found to turn less ipsilaterally compared to the control mice in the amphetamine-induced rotametry and in the apomorphine-induced rotametry, first less contralaterally and subsequently more contralaterally than the control mice. The results of male mice, that were less in number, were excluded from the results as the difference between genders was significant in the wild type mice in the amphetamine-induced rotametry. There was no significant difference in the number of remaining dopamine cells between the genotypes after the lesioning in either of the areas of interest. However, the wild type mice tended to have less cells remaining in the medial tier of the substantia nigra. The observed differences between the genotypes in the rotametries could be accounted by differences in the amount of dopamine released from striatal neurons or differences in striatal dopamine receptor quantities or function. The results support the hypothesis about the contribution of the α5 subunit containing acetylcholine nicotinic receptors in motor function.