Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "natural product"

Sort by: Order: Results:

  • Tuhkalainen, Juho (2012)
    Natural products have been used as medicines for thousands of years. Of the drugs on the market today a significant proportion are natural products or natural product derivatives. Natural products can be enhanced by the means of chemical modification. Modification of a natural product may result in lesser toxicity, greater efficacy or better chemical stability. Different ways to modify a natural product are represented in the literature review using approved drugs as examples. Biological screening is an important part of a modern drug discovery process. Libraries containing synthetic molecules or natural products can be screened. The literature review discusses different types of natural product libraries and how they differ from synthetic libraries. Natural product libraries are smaller and more laborious to screen compared with synthetic libraries. Natural product libraries contain more hits in proportion of total compounds because natural products have activity in biological systems more often than synthetic molecules. A remarkable part of antibiotics and anti-cancer agents are derived from nature. A need for especially new antibiotics will be notable in the future due to resistant microbial strains and the need can be met with natural product research. The object of the experimental part was to evaluate the bioactivity of eleven synthetic abietic acid derivatives. Antimicrobial activity of the compounds was determined againts six human pathogens which were S.aureus, E.coli, P.aeruginosa, E. aerogenes, E. faecalis and Candida albicans. Cytotoxicity testing on the compounds was performed using mammalian cell lines CaCo-2 and Huh-7. Compounds were tested for albumin binding using bovine serum albumin. The effect of bovine serum albumin on the antimicrobial effect of compounds was studied. Spectrophotometric studies on compound-albumin complexes were carried out using fluorescence and UV absorbance measurement techniques. A primary antimicrobial screening was performed with all the compounds. Minimum inhibitory concentration (MIC) values were determined for compounds that showed antimicrobial activity in the primary screening. Cytotoxicity testing was carried out with all the compounds. Albumin binding was studied only on compounds that showed activity in the antimicrobial screening. Some of the compounds were noticed to have antimicrobial activity against the studied gram-positive bacteria and yeast Candida albicans. Antimicrobially active compounds were noticed to bind to albumin and have cytotoxic effects.