Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "neurodegeneraatio"

Sort by: Order: Results:

  • Aromaa, Virve (2022)
    Mild traumatic brain injury (mTBI) is an insult to the brain caused by an external force. Typically contact sport players and military soldiers are prone to mTBI. TBI events trigger pathological processes in the brain and may cause long-term and progressive damages. Increased formation and accumulation of misfolded toxic protein aggregates in the brain leading to neuronal death has been observed after mTBI. In particular, repetitive mTBIs are a risk factor for the development of many neurodegenerative diseases, such as chronic traumatic encephalopathy, Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. As there is no curative treatment to neurodegenerative diseases, research regarding neurodegenerative processes is highly important. Prolyl oligopeptidase (PREP) negatively regulates functions of protein phosphatase 2A (PP2A). It has been shown that PP2A activity is decreased in the brain of those with neurodegenerative diseases and TBI patients, which is thought to be a contributing factor to the development of pathologies of neurodegenerative diseases. The primary objective of this study was to study behavioural changes after repeated mild TBI in PREP knockout mice. The aim was to model mild repeated brain injuries that are common, for instance, in contact sports and that are not accompanied by skull fractures or brain swelling. The intension was to clarify the involvement of the PREP enzyme in behavioural changes induced by repeated mTBI’s and to elucidate long-term pathological changes in the brain. The injury was induced as a closed-head injury with an electromagnetic impactor with one hit every 24 hours and altogether 5 times. A locomotor activity test was performed before the induction of brain injury and was repeated 3 times after mTBI induction. Barnes maze test was used to assess memory and learning functions. In this thesis the brain samples from a previous study were included to also determine the accumulation of total tau protein in wild-type mice. The wild- type mice were administered with either the PREP inhibitor KYP-2047 or HUP-46 10 mg/kg (i.p.) immediately after each hit. After euthanasia, the Western blot assay and immunostaining were performed to study the amount of phosphorylated tau, neuroinflammation, activity of PP2A and autophagy. No differences were found between the sham group and TBI group on the locomotor activity and Barnes maze tests in PREP knockout mice. There was no consistency in total tau protein in wild-type mice treated with PREP inhibitors. In PREP knockout mice there was an upward trend in PP2A levels after mTBI. Repeated mTBI increased markers of phosphorylated tau and neuroinflammation significantly. No significant difference was observed in autophagic function. The results of this thesis are indicative. Due to the low number of animals, the results need to be confirmed in subsequent studies with greater amounts of animals. Based on the results, it seems that absence of the PREP enzyme protects from memory impairments after repeated mTBI. Increased tau protein phosphorylation and neuroinflammation were observed in the TBI group which indicate that PREP alone is not responsible for the development of pathological changes.