Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "polymeeri"

Sort by: Order: Results:

  • Toppari, Antti (2011)
    Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.
  • Itkonen, Lauri (2012)
    Improvements in drug screening technology have resulted in a situation where more poorly soluble compounds enter the drug development pipeline. Poor aqueous solubility is a major issue especially in preclinical toxicity testing, where the generation of high drug loads is needed. For oral delivery, liquid formulations are often used and suspensions are potential options for poorly soluble drugs. While several different techniques to enhance solubility exist, most of them have method specific disadvantages or are not universal. Solid state modification, and especially the use of the high energy amorphous form, offers an efficient technique to enhance dissolution properties of a wide range of compounds. A problem of the amorphous form, however, is its physical instability. Amorphous drug in aqueous suspension can re-crystallize via solid-solid and/or solution-mediated pathways. To maintain the solubility advantage of amorphous forms for sufficient period of time, stabilization is needed. One way to stabilize the amorphous form is to prepare a solid dispersion, where the amorphous drug is dispersed in a stabilizing hydrophilic carrier matrix. Another way to add stabilizing agents is to dissolve them into the suspension medium prior to the amorphous solids. Solubilizing polymers may elevate the equilibrium solubility and reduce the driving force for solution mediated crystallization. The aims of this study were to stabilize amorphous indomethacin in aqueous suspensions and to understand the mechanisms behind stabilization. Indomethacin (IND) was used as a poorly soluble model drug (BCS class II). Four different polymers (PVP, HPMC, HPMC-AS and Soluplus®) were selected as stabilizing agents. Crystallization of solid amorphous IND and the concentration of dissolved IND in water were studied after adding: i) the pure amorphous IND, ii) solid dispersions (SDs) at 1:1 and 9:1 drug:polymer ratios (w/w), and iii) the pure amorphous IND into aqueous medium containing predissolved polymer at concentrations of 10 mg/ml or 1 mg/ml, total drug and polymer concentrations being equivalent to 1:1 and 9:1 drug:polymer ratios (w/w) in the SDs, respectively. For HPMC-AS only a 1 mg/ml polymer concentration was used due to its limited solubility. Both the solid and solution phases of the suspension were analysed at different time points for up to 24 h or until crystallization had occurred. Phase transformations in the solid phase were analysed using ATR-FT-IR spectroscopy combined with principal component analysis. The concentration of dissolved drug over the time was assessed by UV spectroscopy. In general, all the polymers, either in SDs or pre-dissolved in medium delayed the onset of crystallization of amorphous IND. Higher polymer concentrations inhibited the crystallization longer than lower ones. A general trend was that SDs were superior in stabilization of amorphous solids, but pre-dissolved polymer solutions generated and maintained higher IND concentrations in solution. Of the four polymers studied, Soluplus® showed the most promising results: SD of Soluplus® and IND at 1:1 ratio (w/w) stayed amorphous in aqueous medium for more than 28 days. On the other hand, crystallization was quite rapid (30 min) when the amount of polymer was inadequate (9:1 w/w). Soluplus® solution (10 mg/ml) generated a 20-fold higher IND concentration than the corresponding SD, possibly due to micellisation. Different polymers showed different abilities to inhibit crystallization and enhance the drug concentration in solution. The addition method and the drug-polymer ratio had an influence on the stabilization abilities of the polymer. Stabilization mechanisms may be both thermodynamic (type of polymer) and kinetic(method of addition).