Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "proteomics"

Sort by: Order: Results:

  • Järvinen, Hanna (2014)
    Reverse-phase protein microarray, RPMA, is a novel and promising technology for proteomic profiling. The low sample consumption, high-throughput format, high sensitivity and good precision make RPMA attractive tool for clinical use. In RPMA, cellular lysates obtained from various sources (e.g. clinical samples, cell lines) are arrayed onto a substratum as a small spots such that an array is comprised of hundreds to thousands of different samples. The array is incubated with a capture molecule (e.g. antibody) that is validated to recognize the analyte of interest. Signal is created by labelled secondary antibody and the signal is detected by colorimetry, chemiluminescence or fluorescence methods. The literature part introduces the RPMA technology and its applications. RPMA have been utilized in versatile applications for example in cell signal pathway profiling, drug discovery and discovery and validation of biomarkers. In the future, it is hoped to allow individual therapy regimes and the evaluation of treatment efficacy. The aim of the experimental part was to culture various cell lines and prepare lysates for RPMA. The lysates were prepared of ARPE-19, HepG2, Hepa-RG, SKOV-3-ip1, SKOV-3, Caco-2, hCMEC/D3, HCE and D-407 cell cultures. The lysates were stored in -80 °C for subsequent use in RPMAs. The purpose was to optimize the method and based on the optimization studies, to print one RPMA. Cell lysates were arrayed onto nitrocellulose coated glass slide using Nano-Plotter (Gesim)-device which allows automated sample printing. β-actin and α-tubulin proteins were assessed from the samples. To create the signal, fluorescence dye was used, and detected at the visible wavelengths. Based on this study, more optimization is required. The detection method used in the RPMA was not optimal, but the experiment showed promising potential. By taking into account the development issues, the method performance can be significantly improved. Of these issues, perhaps the most important is to use infrared region for the signal detection instead of visible wavelengths.