Browsing by Subject "puristettavuus"
Now showing items 1-1 of 1
-
(2012)The purpose of this study was to investigate how the mixing time of the magnesium stearate affects on the compressibility of partially pregelatinized maize starch. Pregelatinized maize starch is used in pharmaceuticals as a filler, binder and as disintegrant. Because pregelatinized maize starch has lubricant characteristics itself, it is known to be sensitive for the amount and the mixing time of magnesium stearate. The aim is that magnesium stearate is not totally homogenously mixed on the powder surfaces so that even, clean powder surfaces exist. Homogeneous mixing means that particles are coated with magnesium stearate, which as a hydrophobic ingredient prevents bond formation between plastically and elastically behaving particles. Too much magnesium stearate and/or too long mixing time may cause weakening of tablet tensile strength, laminating and capping. The weakening of the tensile strength of the tablet increases friability, which causes problems during packaging process and the transportation. Too much magnesium stearate may also lengthen the disintegration time and slow down the dissolution. The aim of this study was to compare four different brands of pregelatinized maize starch. The purpose was to find differences affecting the compressibility behavior. Also the effect of the mixing time of magnesium stearate for compression behavior of masses were studied. The brands investigated were C*PharmGel DC 93000, Lycatab® C, Starch 1500® and SuperStarch 200®. First mentioned was a reference product which is not manufactured any more. There was only one batch of the reference product but three batches from other products to be able to investigate also batch to batch variation. The characteristics studied from pregelatinized starch samples were bulk density, apparent density and true density, flowability, moisture sorption, moisture content, pH value, swelling volume and particle size. Also NIR, FTIR and Raman spectroscopy and X-ray powder diffraction method were used. Weight, tensile strength, dimensions, friability, disintegration time and moisture sorption were studied for tablets. The compressibility of the mass and elastic behavior of tablets was studied. Pictures of the tablets were also taken by scanning electron microscope. When the mixing time of magnesium stearate was increased from 2 minutes to 5 minutes, the compression pressure needed for pressing tablets for 80 N strength increased 200-700 N depending on the brand of pregelatinized maize starch. Based on the results the best alternative to replace C*PharmGel DC 93000 was chosen to be SuperStarch 200®. Scanning electron microscope pictures showed that C*PharmGel DC 93000 deviates from other qualities studied by being roundish and regular in shape. SuperStarch 200® and Starch 1500® reminded remarkably each other. Lycatab® C was the biggest in particle size and very irregular in shape. The differences found in tabletting followed the expectations based on the SEM-pictures. SuperStarch 200® showed to best compressibility in lowest strain strength and after C*PharmGel DC 93000 it was least sensitive for mixing time of the magnesium stearate. It also has least elastic recovery. The differences between SuperStarch 200® and Starch 1500® in compression properties were moderate but clear. Lycatab® C had clearly the weakest compression properties.
Now showing items 1-1 of 1