Browsing by Subject "räjähdysaineet"
Now showing items 1-1 of 1
-
(2011)Here, we demonstrate the application of desorption atmospheric pressure photoionization (DAPPI) as a screening method at the Criminal Laboratory of the Finnish National Bureau of Investigation for samples confiscated by the Finnish criminal police. DAPPI is a fast mass spectrometric technique to analysis compounds directly from the sample surface in ambient atmosphere. In DAPPI, the sample is thermally desorbed from the sample surface using hot solvent vapor, after which the analytes are ionised in the gas-phase by photon-initiated gas-phase reactions. DAPPI was applied to the direct analysis of confiscated drugs, anabolic steroids and explosives of various matrices without any sample preparation. Confiscated drug samples included e.g. tablets, powders, herbal mixtures, herbal products [Catha edulis (khat) leaves, opium, Cannabis sativa, Psilocybe mushrooms] and ampules and tablets containing anabolic steroids. Powders were sprinkled on a 2-sided tape on a microscope slide, after which the excess powder was shaken away from the tape surface. Liquid samples were analysed from a kitchen paper, after application of 1 Äl of oil from ampules. Other samples were analysed by simply placing them on the DAPPI sampling stage and by directing the solvent plume on the sample surface. DAPPI proved to be a fast and specific analysis technique to this type of forensic analysis. DAPPI does not require any sample preparation, which therefore is well suited for fast forensic analysis, especially for plant samples and oily anabolic steroids, which are considered very challenging with conventional methods. Contamination of the mass spectrometer could be avoided by adjustment of the distance of the sample from the mass spectrometer inlet. Memory effects or contamination of the MS instrument were not observed even after several weeks of DAPPI measurements. DAPPI was also used for trace detection of the explosives trinitrotoluene (TNT), nitroglycol (NK), nitroglycerine (NG), penitrit (PETN), cyclonite (RDX), octogen (HMX) and picric acid. These organic explosives are nitrated compounds, which are divided based on their chemical structure into nitroaromatics (TNT and picric acid), nitroamines (RDX and HMX) and nitrate esters (PETN, NG and NK). Explosive dilutions were analysed with DAPPI from a polymer surface [poly(methyl methacrylate), PMMA] after application and drying of 1 Äl of sample. Also forensic analysis of post-blast residues from different matrices were done. DAPPI was effective in the ionisation of nitroamines and nitrate esters as their adducts with anions such as nitrate, acetate, formate and acetate. TNT used to form negative molecular ions through electron capture and picric acid formed deprotonated molecules through proton transfer. A DAPPI-MS method was developed for all explosives but the identification of the very low concentration explosive traces from wild variety of matrices proved to be difficult.
Now showing items 1-1 of 1