Browsing by Subject "rainbow trout"
Now showing items 1-1 of 1
-
(2021)Pharmaceutical contaminants in waste and surface waters have been recognized as an emerging risk to environmental health. Bioaccumulation of pharmaceuticals increases the risk of adverse effects in off-target species, as the chemical concentration within the organism exceeds the concentration of the surrounding environment. An organism’s ability to metabolize foreign organic compounds influences the likelihood of bioaccumulation. Current methods for predicting bioaccumulation in aquatic organisms are labour intensive or too simplistic to cover the variety of chemical and physiological processes involved and may lead to over or underestimations of environmental risk. A promising approach to improve bioaccumulation predictions, without the need of excessive animal testing, is to incorporate in vitro biotransformation data into computational models. The primary aim of this study was to assess whether selected pharmaceuticals (diclofenac, gemfibrozil, haloperidol, levomepromazine, levonorgestrel, sertraline and risperidone), that are well metabolized in humans through key biotransformation pathways, are metabolized by rainbow trout (Oncorhynchus mykiss) liver enzymes under physiologically relevant conditions (11°C, pH 7.8). A secondary aim was to produce fish in vitro intrinsic clearance (CLint, in vitro) data, that could potentially be used as input in computational models to predict bioaccumulation. In vitro biotransformation was studied using a single vial approach according to the Organisation for Economic Co-operation and Development (OECD) Test Guideline 319B: Determination of in vitro intrinsic clearance using rainbow trout liver S9 sub-cellular fraction (RT-S9). Depletion of the test compounds were measured during a 3-hour incubation period. High-performance liquid chromatography with ultraviolet detection (HPLC–UV) was used for qualitative and quantitative analysis of the samples. Levomepromazine, levonorgestrel and sertraline showed significant substrate depletion compared to negative controls while gemfibrozil, haloperidol, and risperidone did not seem to be metabolized. The results for verapamil were inconclusive. Levomepromazine displayed a higher in vitro intrinsic clearance rate (26 ml/h/g liver) than diclofenac (6.2 ml/h/g liver). These results are in accordance with previous studies and support the notion that a direct comparability between fish and human metabolism cannot be assumed, highlighting the need of fish in vitro biotransformation studies. The apparent lack of in vitro metabolism of risperidone, haloperidol, and gemfibrozil combined with their lipophilicity suggest that they are more likely to accumulate within rainbow trout, compared with the compounds that showed depletion during the assays, although repetitions and additional studies are needed to confirm this.
Now showing items 1-1 of 1